Advertisement

Anatomy and Embryology

, Volume 174, Issue 3, pp 339–353 | Cite as

Ontogenesis of the laminar structure in areas 17 and 18 of the human visual cortex

A quantitative study
  • Karl Zilles
  • Roland Werners
  • Uwe Büsching
  • Axel Schleicher
Article

Summary

A quantitative morphological study of the pre-and postnatal development in the primary (area 17) and secondary (area 18) visual cortical regions was performed on 108 human brains. The neuropil proportion and thickness were measured with an image analyzer for the different cortical layers and the resulting data were approximated with logistic growth functions. The different layers show a marked heterochrony both within and between the areas. The neuropil proportion of layer 1 is the compartment to develop first in both areas. It has the lowest growth velocity, followed by layer VI and layers V, IV, III and II. This maturational sequence reflects the sequence of appearance of immature neurons during the migration period of neocortical ontogenesis. The development of the neuropil proportion is highly synchronized between areas 17 and 18 during the prenatal period, but in the first postnatal weeks, area 17 grows more quickly than area 18. Later on, this relation is reversed and area 18 reaches adult values of neuropil proportions about three months earlier than area 17. The growth in thickness of all layers is complated later than the growth in neuropil proportion. The growth in layer thickness is completed in Area 18 about two months earlier than in area 17, although area 18 has a greater cortical thickness. The results are compared with data on growth in volume, dendritic arborization and the development of visual function.

Key words

Human brain Ontogenesis Visual cortex Laminar structure Quantitative morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker LE, Armstrong DL, Chan F, Wood MM (1984) Dendritic development in human occipital cortical neurons. Dev Brain Res 13:117–124Google Scholar
  2. Berry M, Rogers AW (1965) The migration of neuroblasts in developing cerebral cortex. J Anat 99:691–709Google Scholar
  3. Bethmann IR (1978) Die Area parastriata des Menschen. Medizin Diss KielGoogle Scholar
  4. Bischoff TLW (1880) Hirngewicht des Menschen. Anatomische physiologische und physikalische Tabellen. Neusser, BonnGoogle Scholar
  5. Bok ST (1929) Der Einfluß der in den Furchen und Windungen auftretenden Krümmungen der Großhirnrinde auf die Rindenarchitektur. Z Ges Neurol Psychiat 121:682–750Google Scholar
  6. Boothe RG, Dobson V, Teller DY (1985) Postnatal development of vision in human and nonhuman primates. Annu Rev Neurosci 8:495–545Google Scholar
  7. Braak E (1982) On the structure of the human striate area. Adv Anat Embryol Cell Biol 77:1–86Google Scholar
  8. Braak H (1976) On the striate area of the human isocortex. A Golgi- and pigmentarchitectonic study. J Comp Neurol 166:341–364Google Scholar
  9. Braak H (1984) Architectonics as seen by lipofuscin stains. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York London, pp 59–104Google Scholar
  10. Brodmann K (1909) Vergleichende Lokalisationslehre der Grßhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth JA, LeipzigGoogle Scholar
  11. Büsching U (1983) Zur Ontogenese der Area striata des Menschen. Medizin Diss KielGoogle Scholar
  12. Conel JL (1939–1968) The postnatal development of the human cerebral cortex, vol I–VIII. Harvard University Press, CambridgeGoogle Scholar
  13. De Courten C, Leuba G, Huttenlocher PR, Garey L, Van der Loos H (1982) Volumetric, neuronal and synaptic development of human primary visual cortex. Neurosci Lett [Suppl] 10:135Google Scholar
  14. Eins S, Wilhelms E (1976) Assessment of preparative volume changes in central nervous tissue using automatic image analysis. Microscope 24:29–38Google Scholar
  15. Filmonoff JN (1929) Zur embryonalen und postembryonalen Entwicklung der Großhirnrinde des Menschen. J Psychol Neurol 39:323–389Google Scholar
  16. Filimonoff JN (1932) Über die Variabilität der Großhirnrindenstruktur. Mitteilung II. J Psychol Neurol 44:1–96Google Scholar
  17. Fischer G, Köhler Chr, Röthig W, Rojewski H (1973) Die Gewichtsveränderung von Gehirnen während einer 4-wöchigen Formalinfixierung in Abhängigkeit von Alter, Geschlecht und Liegezeit post mortem. Zentralbl Allg Pathol 117:400–407Google Scholar
  18. Flechsig P (1927) Meine myelogenetische Hirnlehre mit biographischer Einleitung. Springer, BerlinGoogle Scholar
  19. Foh E, Haug H, König M, Rast A (1973) Quantitative Bestimmung zum feineren Aufbau der Sehrinde der Katze. Zugleich ein methodischer Beitrag zur Messung des Neuropils. Microsc Acta 72:148–168Google Scholar
  20. Garey LJ (1983) Development of visual system — comparison of monkey and man. Acta Morphol Hungarica 31:27–38Google Scholar
  21. Garey LJ (1984) Structural development of the visual system of man. Human Neurobiol 3:75–80Google Scholar
  22. Garey LJ, De Courten C (1983) Structural development of the lateral geniculate nucleus and visual cortex in monkey and man. Behav Brain Res 10:3–13Google Scholar
  23. Gladstone RJ (1905) A study of the relation of the brain to the size of the head. Biometrika 4:105–123Google Scholar
  24. Haug H (1958) Quantitative Untersuchungen an der Sehrinde. Thieme, StuttgartGoogle Scholar
  25. Haug H (1979) The evaluation of cell-densities and of nerve-cell size distribution by stereological procedures in a layered tissue (cortex cerebri). Microsc Acta 82:147–161Google Scholar
  26. Haug H (1980) Die Abhängigkeit der Einbettungsschrumpfung des Gehirngewebes vom Lebensalter. Verh Anat Ges 74:699–700Google Scholar
  27. Haug H (1984) Macroscopic and microscopic morphometry of the human brain and cortex. A survey in the light of new results. In: Pilleri G, Tagliavini F (eds) Brain pathology, vol 1, pp 123–149Google Scholar
  28. Haug H, Kühl S, Mecke E, Sass NL, Wasner K (1984) The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of the human brain. J Hirnforsch 25:353–374Google Scholar
  29. Jacobson M (1978) Developmental neurobiology. Plenum Press, New York LondonGoogle Scholar
  30. Kahle W (1969) Die Entwicklung der menschlichen Großhirnhemisphäre. Springer, Berlin Heidelberg New YorkGoogle Scholar
  31. Kostovic I, Rakic P (1984) Development of peristriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesteras staining. J Neurosci 4:25–42Google Scholar
  32. Kraus C (1962) Veränderungen der Paraffinschnitte durch das Mikrotomieren und das nachfolgende Aufziehen. J Hirnforsch 5:23–28Google Scholar
  33. Kretschmann HJ, Wingert F (1971) Computeranwendungen bei Wachstumsproblemen in Biologie und Medizin. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Kretschmann HJ, Schleicher A, Grottschreiber JF, Kullmann W (1979) The Yakovlev collection — a pilot study of its suitability for the morphometric documentation of the human brain. J Neurol Sci 43:111–126Google Scholar
  35. Kretschmann HJ, Kammradt G, Cowart EC, Hopf A, Krauthausen I, Lange HW, Sauer B (1982) The Yakovlev collection. A unique resource for brain research and the basis for a multinational data bank. J Hirnforsh 23:647–656Google Scholar
  36. Larroche JC (1981) The marginal layer in the neocortex of a 7 week-old human embryo. A light and electron microscopic study. Anat Embryol 162:301–312Google Scholar
  37. Leibnitz L (1972) Untersuchungen zur Optimierung der Gewichts-und Volumenänderungen von Hirnen während der Fixierung, Dehydrierung und Aufhellung sowie über Rückschlüsse vom Gewicht des behandelten auf das Volumen des frischen Gehirns. J Hirnforsch 13:320–329Google Scholar
  38. Magoon EH, Robb RM (1981) Development of myelin in human optic nerve and tract: a light and electron microscopic study. Arch Ophthalmol 99:655–659Google Scholar
  39. Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwickl Gesch 134:117–145Google Scholar
  40. Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126Google Scholar
  41. Marin-Padilla M (1983) Structural organization of the human cerebral cortex prior to the appearance fo the cortical plate. Anat Embryol 168:21–40Google Scholar
  42. Marin-Padilla M, Marin-Padilla TM (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. A Golgi study. Anat Embryol 164:161–206Google Scholar
  43. Matiegka H (1902) Über das Hirngewicht, die Schädelkapazität, sowie deren Beziehungen zur psychischen Tätigkeit des Menschen. Sitzungsber Böhm Wiss Math Naturwiss K1 20:1–75Google Scholar
  44. Michel AE, Garey LJ (1984) The development of dendritic spines in the human visual cortex. Hum Neurobiol 3:223–227Google Scholar
  45. Molliver ME, Kostovic I, van der Loos H (1973) The development of synapses in cerebral of the human fetus. Brain Res 50:403–497Google Scholar
  46. Mouritzen Dam AM (1979) Shrinkage of the brain during histological procedures with fixation in formaldehyde solutions of different concentrations. J Hirnforsch 20:115–119Google Scholar
  47. Paul F (1971) Biometrische Analyse der Volumina des Prosencephalon und der Großhirnrinde von 31 menschlichen, adulten Gehirnen. Z Anat Entwickl Gesch 133:325–360Google Scholar
  48. Poliakov GI (1961) Some results of research into the development of the neuronal structure of the cortical ends of the analyzers in man. J Comp Neurol 117:197–212Google Scholar
  49. Powell TPS (1981) Certain aspects of the intrinsic organization of the cerebral cortex. In: Pompeiano O, Marsan CA (eds) Brain mechanisms and perceptual awareness. Raven Press, New York, pp 1–19Google Scholar
  50. Pratt WK (1978) Digital image processing. Wiley, New YorkGoogle Scholar
  51. Purpura DP (1975) Morphogenesis of visual cortex in preterm infant. In: Brazier MA (ed) Growth and development of the brain. Raven Press, New York, pp 33–49Google Scholar
  52. Rabinowicz T (1967) The cerebral cortex of premature infat of the 8th month. Prog Brain Res 4:39–86Google Scholar
  53. Sass NL (1982) The age-dependent variation of the embedding-shrinkage of neurohistological sections. Mikroskopie 39:278–281Google Scholar
  54. Sauer B (1983a) Semi-automatic analysis of microscopic images of the human cerebral cortex using the grey level index. J Microsc 129:75–87Google Scholar
  55. Sauer B (1983b) Lamina boundaries of the human striate area compared with automatically — obtained grey level index profiles. J Hirnforsch 24:79–87Google Scholar
  56. Sauer B (1983c) Quantitative analysis of the laminae of the striate area in man. An application of automatic image analysis. J Hirnforsch 24:89–97Google Scholar
  57. Sauer B, Kammradt G, Krauthausen I, Kretschmann HJ, Lange HW, Wingert F (1983) Qualitative and quantitative development of the visual cortex in man. J Comp Neurol 214:441–450Google Scholar
  58. Schleicher A, Zilles K, Kretschmann HJ (1978) Automatische Registrierung und Auswertung eines Grauwertindex in histologischen Schnitten. Verh Anat Ges 72:413–415Google Scholar
  59. Schwientek P (1985) Quantitative Analyse des arealen und laminären Aufbaus des Isocortex der Ratte. Medizin Diss KölnGoogle Scholar
  60. Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35Google Scholar
  61. Skullerud K (1985) Variations in the size of the human brain. Acta Neurol Scand [Suppl 102] 71:1–94Google Scholar
  62. Swadlow HA (1983) Efferent systems of primary visual cortex: a review of structure and function. Brain Res Rev 6:1–24Google Scholar
  63. v. Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, WienGoogle Scholar
  64. Wessely W (1970) Biometrische Analyse der Frischvolumina des Rhombencephalon, des Cerebellum und der Ventrikel von 31 menschlichen, adulten Gehirnen. J Hirnforsch 12:11–28Google Scholar
  65. Wree A, Zilles K, Schleicher A (1980) Analyse der laminären Struktur der Area striata mit verschiedenen stereologischen Meßmethoden. Verh Anat Ges 74:727–728Google Scholar
  66. Wree A, Schleicher A, Zilles (1982) Estimation of volume fractions in nervous tissue with an image analyzer. J Neurosci Meth 6:29–43Google Scholar
  67. Yakovlev PI, Lecours AG (1967) The myelogenetic cycles of the regional maturation of the brain. In: Minkowsky A (ed) Regional development of the brain in early life. Blackwell, OxfordGoogle Scholar
  68. Zilles K (1972) Biometrische Analyse der Frischvolumina verschiedener prosencephaler Hirnregionen von 78 menschlichen, adulten Gehirnen. Gegenbaurs Morphol Jahrb 118:234–273Google Scholar
  69. Zilles K, Schleicher A (1980) Quantitative Analyse der laminären Struktur menschlicher Cortexareale. Verh Anat Ges 74:725–726Google Scholar
  70. Zilles K, Schleicher A, Kretschmann HJ (1978a) A quantitative approach to cytoarchitectonics. I. The areal pattern ofthe cortex of Tupaia belangeri. Anat Embryol 153:195–212Google Scholar
  71. Zilles K, Schleicher A, Kretschmann HJ (1978b) A quantitative approach to cytoarchitectonics. II. The allocortex of Tupaia belangeri. Anat Embryol 154:335–352Google Scholar
  72. Zilles K, Schleicher A, Kretschmann HJ (1978c) Quantitative Darstellung cytoarchitektonischer Areale im Cortex von Tupaia belangeri und SPF-Katze. Verh Anat Ges 72:409–411Google Scholar
  73. Zilles K, Schleicher A, Büsching U, Benoit W (1981) Ontogenese der laminären Struktur in der Area striata des Menschen. Verh Anat Ges 75:935–936Google Scholar
  74. Zilles K, Stephan H, Schleicher A (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In: Armstrong E, Falk D (eds) Primate brain evolution. Methods and concepts. Plenum Press, New York London, pp 177–201Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Karl Zilles
    • 1
  • Roland Werners
    • 1
  • Uwe Büsching
    • 1
  • Axel Schleicher
    • 1
  1. 1.Anatomisches InstitutKöln 41Germany

Personalised recommendations