Energy-speed relation and optimal speed during level walking

  • H. J. Ralston

Summary and Conclusions

Energy expenditures in 12 male and 7 female untrained adult subjects were measured with Max Planck respirometers while walking in the laboratory at speeds of 24.4, 48.8, 73.2 and 97.6 meters/ min. The results were collated with those of other investigators, and the following conclusions were drawn:

  1. 1.

    During level walking, the energy expenditure is a linear function of the square of the speed. The relation is: \(\dot E_w = 29 + 0.0053v^2 \), where \(\dot E_w \) is energy expenditure in cal/min/kg, and v is speed in meters/min.

  2. 2.

    The energy expenditure per unit distance walked is derived from the above equation and is shown to be a hyperbola having a minimal value of 0.78 cal/meter/kg at a speed of 74 meters/min.

  3. 3.

    A given subject adopts a “natural” speed of walking that corresponds to a minimal value of the energy expenditure expressed as cal/ meter/kg.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atzler, E., u.R. Herbst: Arbeitsphysiologische Studien, III. Teil. Pflügers Arch. ges. Physiol.215, 291–328 (1927).CrossRefGoogle Scholar
  2. Benedict, F. G., andH. Mursch-Hauser: Energy Transformations during Horizontal Walking. Carnegie Institute of Washington Pub. 231, pp. 52–60. Washington, D. C.: Carnegie Institute of Washington 1915.Google Scholar
  3. Booyens, J., andW. R. Keatinge: The expenditure of energy by men and women walking. J. Physiol. (Lond.)138, 165–171 (1957).CrossRefGoogle Scholar
  4. Bresler, B., C. W. Radcliffe andF. R. Berry Jr.: Energy and Power in the Legs of Above-Knee Amputees During Normal Level Walking. Berkeley, University of California, Lower-Extremity Amputee Research-Project 1957.Google Scholar
  5. Cotes, J. E., F. Meade andM. E. Wise: Standardisation of test exercise. Fed. Proc.16, 25 (1957).Google Scholar
  6. Daniels, F., J. H. Vanderbie andF. R. Winsmann: Energy Cost of Treadmill Walking Compared to Road Walking. Report No. 220, Environmental Protection Division, Natick QM Research and Development Laboratory, Lawrence, Mass. 1953.Google Scholar
  7. Durnin, J. V. G. A., andV. Mikulicic: The influence of graded exercises on the oxygen consumption, pulmonary ventilation and heart rate of young and elderly men. Quart. J. exp. Physiol.41, 442–452 (1956).CrossRefGoogle Scholar
  8. Mahadeva, K., R. Passmore andB. Woolf: Individual variations in the metabolic cost of standardized exercises: the effects of food, age, sex and race. J. Physiol. (Lond.)121, 225–231 (1953).CrossRefGoogle Scholar
  9. Montoye, H. J., W. D. v. Huss, E. P. Reineke andJ. Cockrell: An investigation of the Müller-Franz calorimeter. Int. Z. angew. Physiol.17, 28–33 (1958).PubMedGoogle Scholar
  10. Müller, E. A., u.H. Franz: Energieverbrauchsmessungen bei beruflicher Arbeit mit einer verbesserten Respirations-Gasuhr. Arbeitsphysiologie14, 499–504 (1952).PubMedGoogle Scholar
  11. Müller, E. A., u.Th. Hettinger: Arbeitsphysiologische Untersuchungen verschiedener Oberschenkel-Kunstbeine. Z. Orthop.81, 525–545 (1952).PubMedGoogle Scholar
  12. —: Der Einfluß der Gehgeschwindigkeit auf den Energieumsatz beim Gehen mit Kunstbeinen. Z. Orthop.83, 620–627 (1953).PubMedGoogle Scholar
  13. Passmore, R., andJ. V. G. A. Durnin: Human energy expenditure. Physiol. Rev.35, 801–840 (1955).PubMedGoogle Scholar
  14. Reitemeyer, H.: Energieumsatz und Gangbild beim Gehen und Radfahren mit einem Unterschenkelkunstbein. Z. Orthop.86, 571–582 (1955).PubMedGoogle Scholar
  15. Weir, J. B. de V.: New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. (Lond.)109, 1–9 (1949).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1958

Authors and Affiliations

  • H. J. Ralston
    • 1
    • 2
  1. 1.Biomechanics LaboratoryUniversity of CaliforniaSan FranciscoUSA
  2. 2.Biomechanics LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations