Applied Physics B

, Volume 38, Issue 3, pp 171–178 | Cite as

Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals

Surface impedance/admittance approach
  • A. Knoesen
  • M. G. Moharam
  • T. K. Gaylord
Contributed Papers

Abstract

The use of surface-impedance and surface-admittance concepts for analyzing reflection and refraction at an isotropic dielectric interface (first developed about 1938) is extended to include an interface between uniaxial birefringent dielectrics. Total internal reflection and the polarizing (Brewster) angle at an anisotropic interface are shown to be naturally explainable in terms of surface impedance (for TM polarization) and surface admittance (for TE polarization). The allowable modes in an integrated optical uniaxial asymmetric dielectric slab waveguide are also shown to be directly obtainable using the surface impedance/admittance approach. Numerical examples are presented.

PACS

42.10.Qj 42.80.Lt 42.82+n 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Kong: Am. J. Phys.43, 73–76 (1975)Google Scholar
  2. 2.
    F.A. Jenkins, H.A. White.Fundamentals of Optics (McGraw-Hill, New York 1975)Google Scholar
  3. 3.
    M.Born, E. Wolf:Principles of Optics (Pergamon, New York 1975)Google Scholar
  4. 4.
    A. Wünsche: Ann. Phys.7, 201–214 (1970)Google Scholar
  5. 5.
    D.W. Berreman: J. Opt. Soc. Am.62, 502–510 (1972)Google Scholar
  6. 6.
    E.E. Bergmann: Bell Syst. Tech. J.61, 935–948 (1982)Google Scholar
  7. 7.
    H.C. Chen.Theory of Electromagnetic Waves (McGraw-Hill, New York 1983)Google Scholar
  8. 8.
    V.I. Dmitriev, M.N. Berdichevsky Proc. IEEE67, 1034–1044 (1979)Google Scholar
  9. 9.
    S.A. Schelkunoff: Bell Syst. Tech. J..17, 17–48 (1938)Google Scholar
  10. 10.
    R.E. Collin.Field Theory of Guided Waves (McGraw-Hill, New York 1960)Google Scholar
  11. 11.
    W.L. Weeks.Electromagnetic Theory for Engineering Applications Wiley, New York 1964)Google Scholar
  12. 12.
    S. Ramo, J.R. Whinnery, T. van Duzer:Fields and Waves in Communication Electronics (Wiley, New York 1965)Google Scholar
  13. 13.
    K.G. Budden.Radio Waves in the Ionosphere (Cambridge Univ. Press, Cambridge 1961)Google Scholar
  14. 14.
    L.M. Brekhovskikh.Waves in Layered Media (Academic, New York 1980)Google Scholar
  15. 15.
    M.A. Leontovitch: Izv. Akad. Nauk SSSR, Ser. Fiz.8, 16 (1944)Google Scholar
  16. 16.
    M.A. Leontovitch, V.A. Fock: Zh. Eksp. Teor. Fiz.16, 557 (1946)Google Scholar
  17. 17.
    M.V. Klein:Optics (Wiley, New York 1970)Google Scholar
  18. 18.
    In [Ref. 17, pp. 603–604] it is stated that total internal reflection occurs under two conditions at a uniaxial interface: 1) if the wavevector of the transmitted wave is parallel to the interface or 2) if the power of the transmitted wave is parallel to the interface. The first condition is erroneous!Google Scholar
  19. 19.
    H.K.V. Lotsch Optik32, 116, 189, 299, 553 (1970/71)Google Scholar
  20. 20.
    H.G. Unger: InIntegrated Optics, ed. by S. Martellucci and A.N. Chester (Plenum, New York 1983) pp. 11–47Google Scholar
  21. 21.
    O. Schwelb: IEEE Trans. MTT30, 899–905 (1982)Google Scholar
  22. 22.
    S. Wang, M. Shah, J.D. Crow: J. Appl. Phys.43, 1861–1875 (1972)Google Scholar
  23. 23.
    T. Tamir (ed.):Integrated Optics, 2nd ed. Topics Appl. Phys.7 (Springer, Berlin Heidelberg 1979) p. 20Google Scholar
  24. 24.
    R.G. Hunsperger:Integrated Optics: Theory and Technology, Springer Ser. Opt. Sci.33 (Springer, Berlin, Heidelberg 1984) p. 28Google Scholar
  25. 25.
    R.V. Schmidt, I.P. Kaminow: Appl. Phys. Lett.25, 458–460 (1974)Google Scholar
  26. 26.
    A. Knoesen, T.K. Gaylord: In preparationGoogle Scholar
  27. 27.
    L.B. Felsen, N. Marcuwitz:Radiation and Scattering of Waves (Prentice Hall, New York 1973) pp. 101–102Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • A. Knoesen
    • 1
  • M. G. Moharam
    • 1
  • T. K. Gaylord
    • 1
  1. 1.School of Electrical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations