Advertisement

Russian Chemical Bulletin

, Volume 44, Issue 1, pp 78–86 | Cite as

Stoichiometry and mechanism of protonation of alkali metal salts of benzophenone radical anions by weak proton donors and its relevance to the base-catalyzed decomposition of benzopinacol

  • C. G. Screttas
  • G. I. Ioannou
  • D. G. Georgiau
Physical Chemistry

Abstract

The Stoichiometry of the protonation of lithium and potassium salts of benzophenone radical anions and of the lithium salt of the fluorenone radical anion by methanol has been measured and found to be [(Ar2C=O)]/[MeOH] =2∶1. This result, which was obtained by the method of magnetic titration, implies that paramagnetism decays by the reaction between a ketyl anion and a ketyl radical (i.e., a protonated ketyl anion). The reactivities of alkali metal salts of fluorenone radical anions in relation to methanol exhibit a pronounced dependence on the nature of the counterion. No kinetic deuterium isotope effect has been found for the protonation of the lithium salt of the benzophenone radical anion in tetrahydrofuran (THF) bytert-pentyl alcohol. The lithium salt of the benzophenone radical anion inN,N,N′,N′-tetramethylethylenediamine (TMEDA) behaves markedly differently. Namely, its protonation by methanol exhibits 1 ∶ 1 Stoichiometry and it reacts considerably more slowly withsec-butyl alkohol,K(THF)/K(TMEDA) = 2.5. Benzopinacol undergoes decomposition by an alkoxide base to diphenyl ketyl, which decays into an equimolar mixture of benzophenone and benzhydrol. The reaction follows second-order kinetics and the specific rate constants exhibit an inverse relationship with respect to the initial concentration of the alkoxide. With a very strong base benzopinacol decomposes into two diphenyl ketyl anions. On the basis of this information as well as on studies of products, relevant mechanisms are proposed for the protonation of ketyl anions and for the decomposition of aromatic pinacols in basic media.

Key words

benzophenone, radical anion benzopinacol protonation, Stoichiometry, mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. l. (a)
    C. G. Screttas,J. Chem. Soc., Chem. Commun., 1972, 869Google Scholar
  2. 1. (b)
    C. G. Screttas,J. Chem. Soc., Perkin Trans. 2, 1974, 745Google Scholar
  3. 1. (c)
    C. G. Screttas and D. G. Georgiou,Tetrahedron Lett., 1975, 417Google Scholar
  4. 1. (d)
    C. G. Screttas and M. Micha-Screttas,J. Org. Chem., 1983,48, 252Google Scholar
  5. 1. (e)
    C. G. Screttas and M. Micha-Screttas,J. Phys. Chem., 1983,87, 3844.Google Scholar
  6. 2. (a)
    C. G. Screttas and M. Micha-Screttas,J. Org. Chem., 1981,46, 993Google Scholar
  7. 2. (b)
    C. G. Screttas and M. Micha-Screttas,J. Org. Chem., 1983,46, 153Google Scholar
  8. 2. (c)
    C. G. Screttas and M. Micha-Screttas,J. Am. Chem. Soc., 1987,109, 7573.Google Scholar
  9. 3. (a)
    C. T. Cazianis and C. G. Screttas,Tetrahedron, 1983,39, 165Google Scholar
  10. 3. (b)
    C. G. Screttas and C. T. Cazianis,Tetrahedron, 1978,34, 933.Google Scholar
  11. 4.
    W. E. Bachman,J. Am. Chem. Soc., 1933,55, 1179.Google Scholar
  12. 5.
    G. O. Schenk, G. Matthias, M. Pape, M. Cziesla, and G. von Bunau,Liebigs Ann. Chem., 1968,719, 80.Google Scholar
  13. 6.
    A. J. Bard, A. Ledwith, and H. J. Shine,Adv. Phys. Org. Chem., 1976,13, 260.Google Scholar
  14. 7.
    S. G. Cohen, A. Parola, and G. H. Parson, Jr.,Chem. Rev., 1973,73, 141.Google Scholar
  15. 8.
    M. K. Kalinowski and Z. R. Grabowski,Trans. Faraday Soc., 1966,62, 7926.Google Scholar
  16. 9.
    G. E. Adams and R. L. Wilson,Trans. Faraday Soc., 1973,69, 719.Google Scholar
  17. 10.
    D. J. Cram, inFundamentals of Carbanion Chemistry, Academic Press, New York, 1965, 4.Google Scholar
  18. 11.
    R. P. Bell,Trans. Faraday Soc., 1959,55, 1.Google Scholar
  19. 12.
    S. W. Benson inThe Foundation of Chemical Kinetics, McGraw-Hill Co., New York, 1960, 17.Google Scholar
  20. 13.
    J. J. Barber and G. M. Whitesides,J. Am. Chem. Soc., 1980,102, 239.Google Scholar
  21. 14.
    J. K. Kochi, inFree Radicals, Ed. J. K. Kochi, Wiley Interscience, New York, 1973,2, Ch. 23.Google Scholar
  22. 15.
    A. J. Bard, A. Ledwith, and H. J. Shine,Adv. Phys. Org. Chem., 1976,13, 256.Google Scholar
  23. 16.
    D. E. Paul, P. Lipkin, and S. I. Weissman,J. Am. Chem. Soc., 1956,78, 116.Google Scholar
  24. 17.
    R. L. Ward and S. I. Weissman,J. Chem. Soc., 1957,79, 2086.Google Scholar
  25. 18.
    P. Neta,Adv. Phys. Org. Chem., 1976,12, 223.Google Scholar
  26. 19.
    A. W. Langer, Jr.,Trans. N. Y. Acad. Sci., 1965,27, 741.Google Scholar
  27. 20.
    E. Hayon, T. Bata, N. N. Lichtin, and M. Simic,J. Phys. Chem., 1972,76, 2072.Google Scholar
  28. 21.
    L. S. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard,J. Phys. Chem. Ref. Data, 1988,17, Suppl. 1.Google Scholar
  29. 22.
    H. Taube,Electron Transfer Reactions of Compex Ions; Academic Press, New York, 1970.Google Scholar
  30. 23.
    Handbook of Chemistry and Physics, 54th Ed., Boca Raton (Fl.) CRC Press, 1973–1974, Sec. C-2.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • C. G. Screttas
    • 1
  • G. I. Ioannou
    • 1
  • D. G. Georgiau
    • 1
  1. 1.Institute of Organic ChemistryThe National Hellenic Research FoundationAthensGreece

Personalised recommendations