Journal of Atmospheric Chemistry

, Volume 17, Issue 4, pp 307–324

On the pH-dependent formation constants of iron(III)-sulfur(IV) transient complexes

  • Eric A. Betterton
Article

Abstract

An experimental study is described of Fe(III)-S(IV) formation constants measured as a function of pH (1–3), ionic strength (0.2–0.5 M) and [Fe(III)]T (2.5−5.0×10−4 M) using a continuous-flow spectrophotometric technique to make observations 160 ms after mixing. Preliminary experiments using pulse-accelerated-flow (PAF) spectrophotometry to measure rate constants on a microsecond timescale are also described. The conditional formation constant at 25 °C can be modeled with the following equation: {ie307-1} where {ie307-2}K7 andK8 can be interpreted as intrinsic constants for the coordination of HSO3 by FeOH2+ and Fe3+, respectively, but until further evidence is obtained they should be regarded as fitting constants. PAF spectrophotometry showed that the initial reaction of Fe(III) with S(IV) (pH 2.0) is characterized by a second-order rate constant of ≈4×106 M−1 s−1 which is comparable to rate of reaction of FeOH2+ with SO42−. However, the PAF results should be regarded as preliminary since unexpected features in the initial data indicate that the reaction may be more complex than expected.

Key words

Sulfur dioxide iron(III)-S(IV) complexes sulfur(IV) autoxidation pulsed-accelerated-flow spectrophotometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baes, C. F., Jr. and Mesmer, R. E., 1976,The Hydrolysis of Cations, Wiley-Interscience, New York.Google Scholar
  2. Banerjee, M. and Konar, R. S., 1983, Ferric-bisulfite ions: reaction in aqueous medium,Indian J. Chem. 22A, 97–98.Google Scholar
  3. Basset, H. and Parker, W. G., 1951, The oxidation of sulfurous acid,J. Chem. Soc. 1540–1560.Google Scholar
  4. Brimblecombe, P. and Spedding, D. J., 1974, The catalytic oxidation of micromolar aqueous sulphur dioxide-I,Atmos. Environ. 8, 937–945.Google Scholar
  5. Carlyle, D. W., 1971, A kinetic study of the aquation of sulfitoiron(III) ion,Inorg. Chem. 10, 761–764.Google Scholar
  6. Carlyle, D. W. and Zeck, O. F., 1973, Electron transfer between sulfur(IV) and hexaaquoiron(III) ion in aqueous perchlorate solution. Kinetics and mechanism of uncatalyzed and copper(II) catalyzed reactions,Inorg. Chem. 12, 2978–2983.Google Scholar
  7. Carpenter, H. C. H., 1902, The oxidation of sulfurous acid to dithionic acid by metallic oxides,J. Chem. Soc. 81, 1–14.Google Scholar
  8. Cavasino, F. P., 1968, A temperature jump study of the kinetics of formation of the monosulfato complex of iron (III),J. Phys. Chem. 72, 1378–1384.Google Scholar
  9. Chang, S. G., Littlejohn, D., and Hu, K. Y., 1987, Disulfate ion as an intermediate to sulfuric acid in acid rain formation,Science 237, 756–758.Google Scholar
  10. Conklin, M. H. and Hoffmann, M. R., 1988, Metal ion-sulfur(IV) chemistry. 3. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes,Environ. Sci. Technol. 22, 899–907.Google Scholar
  11. Danilczuk, E. and Swinarski, A., 1961, Jon kompleksowy [FeIII(SO3)n]3−2n,Roczniki Chemii 35, 1563–1572.Google Scholar
  12. Dash, A. C., El-Awady, A. A., and Harris, G. M., 1981, Kinetic and mechanism of the reaction of sulfito complexes in aqueous solution. 3. Formation, acid-catalyzed decomposition and intramolecular isomerization of oxygen-bonded (αβS)-(sulfito)(tetraethylenepentamine)cobalt(III) ion and the hydrolysis of its sulfur-bonded analogue,Inorg. Chem. 20, 3160–3166.Google Scholar
  13. Datta, N. C., 1981, Chemistry of iron(III) oxides and oxyhydroxides,J. Sci. Ind. Res. 40, 571–583.Google Scholar
  14. Flynn, C. M., Jr., 1984, Hydrolysis of inorganic iron(III) salts,Chem. Rev. 84, 31–41.Google Scholar
  15. Fuzzi, S., 1978, Study of iron(III) catalyzed sulfur dioxide oxidation in aqueous solution over a wide range of pH,Atmos. Environ. 12, 1439–1442.Google Scholar
  16. Grant, M. and Jordan, R. B., 1981, Kinetics of solvent water exchange on iron(III),Inorg. Chem. 20, 55–60.Google Scholar
  17. Hancock, R. D. and Marsicano, F., 1980, Parametric correlation of formation constants in aqueous solution 2. Ligands with large donor atoms,Inorg. Chem. 19, 2709–2714.Google Scholar
  18. Hasinoff, B. B., 1979, Fast reaction kinetics of the binding of bromide to iron(III) studied on a high pressure temperature jump apparatus,Can. J. Chem. 57, 77–82.Google Scholar
  19. Hoffmann, M. R. and Calvert, J. G., 1985,Chemical Transformation Modules for Eulerian Acid Deposition Models. Vol. 2. The Aqueous Phase Chemistry, NCAR, Inter agency agreement DW 930237, Atmos. Sci. Res. Lab., U.S. EPA, Research Triangle Park, NC.Google Scholar
  20. Horner, D. A. and Connick, R. E., 1986, Equilibrium quotient for the isomerization of bisulfite ion from HSO3 to SO3H,Inorg. Chem. 25, 2414–2417.Google Scholar
  21. Jacobs, S. A., Nemeth, M. T., Kramer, G. W., Ridley, T. Y. and Margerum, D. W., 1984, Pulsed-accelerated-flow spectrometer with integrating observation for measurement of rapid rates of reaction,Anal. Chem. 56, 1058–1065.Google Scholar
  22. Johansson, L. G. and Ljungstrom, E., 1979, The structure of a monoclinic phase of iron(II) sulfite trihydrate,Acta Cryst. B35, 2683–2685.Google Scholar
  23. Johansson, L. G. and Ljungstrom, E., 1980, Structure of iron(II) sulfite 2 1/2-hydrate,Acta Cryst. B36, 1184–1186.Google Scholar
  24. Karraker, D. G., 1963, The kinetics of the reaction between sulfurous acid and ferric ion,J. Phys. Chem. 67, 871–874.Google Scholar
  25. Kraft, J. and van Eldik, R., 1989a, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 1. Formation of transient iron(III)-sulfur(IV) complexes,Inorg. Chem. 28, 2297–2305.Google Scholar
  26. Kraft, J. and van Eldik, R., 1989b, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 2. Decomposition of transient iron(III)-sulfur(IV) complexes,Inorg. Chem. 28, 2306–2312.Google Scholar
  27. Kraft, J. and van Eldik, R., 1989c, The possible role of iron(III)-sulfur(IV) complexes in the catalyzed autoxidation of sulfur(IV)-oxides. A mechanistic investigation,Atmos. Environ. 23, 2709–2713.Google Scholar
  28. Larsson, L. O. and Niinisto, L., 1973, The crystal structure of ammonium hexesulphitoferrate(III), (NH4)9[Fe(SO3)6],Acta Chem. Scand. 27, 859–867.Google Scholar
  29. Martin, L. R., 1984, Kinetic studies of sulfite oxidation in aqueous solution, inSO 2, NO and NO2 Oxidation Mechanisms; Atmospheric Considerations, J. G. Calvert, Ed., Butterworth, Boston.Google Scholar
  30. Martin, L. R. and Hill, M. W., 1987a, The iron catalyzed oxidation of sulfur: reconciliation of the literature rates,Atmos. Environ. 21, 1487–1490.Google Scholar
  31. Martin, L. R. and Hill, M. W., 1987b, Optical measurements of aqueous kinetics at micromolar concentrations,J. Phys. E.; Sci. Instrum. 20, 1383–1387.Google Scholar
  32. Martin, L. R., Hill, M. W., Tai, A. F., and Good, T. W., 1991, The iron catalyzed oxidation of sulfur(IV) in aqueous solution: differing effects of organics at high and low pH,J. Geophys. Res. 96, 3085–3097.Google Scholar
  33. Nemeth, M. T., Fogelman, K. D., Ridley, T. Y. and Margerum, D. W., 1987, Rapid rate measurements by the pulsed-accelerated-flow method,Anal. Chem. 59, 283–291.Google Scholar
  34. Newton, T. W. and Arcand, G. M., 1953, A spectrophotometric study of the complex formed between cerous and sulfate ions,J. Am. Chem. Soc. 75, 2449–2453.Google Scholar
  35. Pratt, J. M. and Thorpe, R. G., 1969, Cis and trans effects in cobalt(III) complexes,Adv. Inorg. Chem. Radiochem. 12, 375–427.Google Scholar
  36. Smith, R. M. and Martell, A. E., 1976,Critical Stability Constants, Plenum, New York, Vol. 4.Google Scholar
  37. Stumm, W. and Morgan, J. J., 1981,Aquatic Chemistry, Wiley, New York.Google Scholar
  38. Sylva, R. N., 1972, The hydrolysis of iron(III),Rev. Pure Appl. Chem. 22, 115–132.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Eric A. Betterton
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations