Water, Air, and Soil Pollution

, Volume 87, Issue 1–4, pp 231–243

Fate of sludge-applied silicones in agricultural soil microcosms

  • R. G. Lehmann
  • C. L. Frye
  • D. A. Tolle
  • T. C. Zwick
Article

Abstract

Our previous publications showed that silicone (polydimethylsiloxane, or PDMS) polymers degrade to monomeric silanols and eventually to C02 in laboratory soil incubations. In this study, 200 cs14C-PDMS was added to soil microcosms (Tuscola sandy loam and Fargo silty clay) in anaerobically digested sludge. Soybeans followed by wheat were grown for 7 months during which microcosms were subjected to 3 leaching events. Recoveries of14C in the microcosms ranged from 47 to 90%. The recovered14C was almost completely in the soils, with trace amounts in leachate and ≤ 2% of the total in plant shoots. Extraction of soils coupled with HPLC-GPC showed that the majority of soill4C was still polymeric, but with lower molecular weight than the original PDMS. From 1 to 5% of the remaining14C was probably small silanols. Results thus confirm laboratory studies and show that PDMS degradation occurs under conditions similar to the field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C., Hochgeschwender, K., Weidemann, H., and Wilmes, R.: 1987,Chemosphere 16, 2567.Google Scholar
  2. Arthur, M. F., Comaby, B. W., Gavaskar, A. R., O'brien, G. K., Shafer, M. G., Tolle, D. A., Wickramanayake, G. B., and Zwick, T. C.: 1988,Manual for sewage sludge application to croplands and orchards, NTIS No. PB89 110662/AS, Criteria and Standards Division, Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  3. Atkinson, R.: 1991,Environ. Sci. Technol. 25, 863.Google Scholar
  4. Bair, F. E., ed.: 1992,The Weather Almanac, 6th ed., Gale Research Inc., Detroit, MI, p. 394.Google Scholar
  5. Batley, G. E., and Hayes, J. W.: 1991,Aust. J. Mar. Freshwater Res. 42, 287.Google Scholar
  6. Buch, R. R., and Ingebrigtson, D. N.: 1979,Environ. Sci. Technol. 13, 676.Google Scholar
  7. Buch, R. R., Lane, T. H., Annelin, R. B., and Frye, C. L.: 1984,Environ. Toxicol. Chem. 3, 215.Google Scholar
  8. Hobbs, E. J., Keplinger, M. L., and Calandra, J. C.: 1975,Environ. Res. 10, 397.Google Scholar
  9. Lehmann, R. G.: 1993,Environ. Toxicol. Chem. 12, 1851.Google Scholar
  10. Lehmann, R. G., Varaprath, S., and Frye, C. L.: 1994a,Environ. Toxicol. Chem. 13, 1061.Google Scholar
  11. Lehmann, R. G., Varaprath, S., and Frye, C. L.: 1994b,Environ. Toxicol. Chem. 13, 1753.Google Scholar
  12. Lindsay, W. L.: 1979,Chemical Equilibria in Soils, John Wiley and Sons, New York, p. 57.Google Scholar
  13. Metcalf and Eddy, Inc.: 1979,Wastewater Engineering: Treatment, Disposal and Reuse, 2nd ed., McGraw-Hill, New York, p. 393.Google Scholar
  14. Pellenbarg, R.: 1979,Environ. Sci. Technol. 13, 565.Google Scholar
  15. Sommerlade, R., Parlar, H., Wrobel, D., and Kochs, P.: 1993,Environ. Sci. Technol. 27, 2435.Google Scholar
  16. Tolle, D. A., Frye, C. L., Lehmann, R. G., and Zwick, T. Z.: 1994,Sci. Total Environ. (accepted).Google Scholar
  17. Watts, R. J., Kong, S., Haling, C. S., Gearhart, L., Frye, C. L., and Vigon, B. W.: 1994,Water Res. (Accepted).Google Scholar
  18. Zwick, T. C., Arthur, M. F., and Tolle, D. A.: 1984,Plant and Soil 77, 395.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • R. G. Lehmann
    • 1
  • C. L. Frye
    • 1
  • D. A. Tolle
    • 2
  • T. C. Zwick
    • 2
  1. 1.Health and Environmental SciencesDow Corning CorporationMidlandUSA
  2. 2.ColumbusUSA

Personalised recommendations