Journal of Atmospheric Chemistry

, Volume 22, Issue 3, pp 319–346 | Cite as

Emission of aliphatic amines from animal husbandry and their reactions: Potential source of N2O and HCN

  • Gunnar W. Schade
  • Paul J. Crutzen


We measured the emissions of volatile aliphatic amines and ammonia produced by the manure of beef cattle, dairy cows, swine, laying hens and horses in livestock buildings. The amine emissions consisted almost exclusively of the three methylamines and correlated with those of ammonia. The molar emission ratios of the methylamines to ammonia, and data on NH3 emissions from animal husbandry in Europe, together with global statistics on domestic animals, were used to estimate the global emissions of amines. Annual global methylamine-N input to the atmosphere from animal husbandry in 1988 was 0.15±0.06 TgN (Tg=1012 g). Almost 3/4 of these emissions consisted of trimethylamine-N. This represents about half of all methylamine emissions to the atmosphere. Other sources are marine coastal waters and biomass burning.

Possible reaction pathways for atmospheric methylamines are shown. Among various speculative but possible products N2O and HCN are of interest because the emission of methylamines could contribute to the global budgets of these compounds. Maximum atmospheric N2O production from methylamines are below 0.4 Tg N/year, which is less than 10% of the annual N2O growth rate. Although we do not expect the methylamine emissions to contribute in a major way to the atmospheric N2O budget, more studies are needed to establish this conclusion beyond doubt. Similar conclusions hold for HCN.

Key words

animal waste volatilization of aliphatic amines atmospheric chemistry of methylamines global N2O and HCN budgets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asman, Willem A. H., 1992, Ammonia emissions in Europe: Updated emissions and emission variations, Report No. 228471008, National Institute for Public Health and Environmental Protection, Bilthoven, RIVM Research for man and environment.Google Scholar
  2. Atkinson, R., Perry, R. A., and Pitts Jr., J. N., 1977, Rate constants for the reactions of the OH radical with CH3NH2 and CH3SH over the temperature range 299–426 K,J. Chem. Phys. 66 (4), 1578–1581.Google Scholar
  3. Atkinson, R., Perry, R. A., and Pitts Jr., J. N., 1978, Rate constants for the reactions of the OH radical with (CH3)2NH, (CH3)3N, and C2H5NH2 over the temperature range 298–426 K,J. Chem. Phys. 68 (4), 1850–1853.Google Scholar
  4. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson Jr., R. F., Kerr, J. A., and Troe, J., 1992, Evaluated kinetic and photochemical data for atmospheric chemistry, Suppl. IV,J. Phys. Chem. Ref. Data 21 (6).Google Scholar
  5. Atkinson, R., 1987, A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds,Int. J. Chem. Kinet. 19, 799–822.Google Scholar
  6. Bauer, D., Crowley, J. N., and Moortgat, G. K., 1992, The UV absorption spectrum of the ethylperoxy radical and its self-reaction kinetics between 218 and 333 K,J. Photochem. Photobiol., A: Chem. 65, 329–344.Google Scholar
  7. Beck, W. and Engelhardt, H., 1992, Capillary electrophoresis of organic and inorganic cations with indirect UV detection,Chromatographia 33 (7/8), 313–316.Google Scholar
  8. Cicerone, R. J. and Zellner, R., 1983, The atmospheric chemistry of hydrogen cyanide (HCN),J. Geophys. Res. 88 (C15), 10689–10696.Google Scholar
  9. Cofer, W. R., Collins, V. G., and Talbot, R. W., 1985, Improved Aqueous scrubber for collection of soluble atmospheric trace gases,Environ. Sci. Tech. 19, 557–560.Google Scholar
  10. CRC Handbook of Chemistry and Physics, 66th edn. 1985–86, eds. C. Robert and C. Weast, CRC Press, Boca Raton, FL, U.S.A.Google Scholar
  11. Cronn, D. R., Charlson, R. J., Knights, R. L., Crittenden, A. L., and Appel, B. R., 1977, A survey of the molecular nature of primary and secondary constituents of particles in urban air by high resolution mass spectrometry,Atmos. Environ. 11, 929–940.Google Scholar
  12. Crutzen, P. J., 1971, Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere.J. Geophys. Res. 76, 7311–7327.Google Scholar
  13. Crutzen, P. J., 1983, Atmospheric interactions — homogeneous gas reactions of C, N and S containing compounds, in B. Bolin and R. B. Cook (eds.),The Major Biochemical Cycles, Scope 21, Wiley, Chichester, GB, pp. 92ff.Google Scholar
  14. Crutzen, P. J., Aselmann, I., and Seiler, W., 1986, Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans,Tellus 38B, 271–284.Google Scholar
  15. Cyr, D. R., Continetti, R. E., Metz, R. B., Osborn, D. L., and Neumark, D. M., 1992, Fast beam studies of NCO free radical photodissociation,J. Chem. Phys. 97 (7), 4937–4947.Google Scholar
  16. DeMore, W. B., Sander, S. B., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1992, Chemical kinetics and photochemical data for use in stratospheric modeling, JPL/NASA: Evaluation number 10.Google Scholar
  17. Dentener, F. and Crutzen, P. J., 1994, A three-dimensional model of the global ammonia cycle,J. Atmos. Chem. 19, 331–369.Google Scholar
  18. Dickenson, R. and Cicerone, R., 1986, Future global warming from atmospheric trace gases,Nature 319, 109–115.Google Scholar
  19. Di Gorcia, A. and Samperi, R., 1974, Gas chromatographic determination at the parts-per-million level of aliphatic amines in aqueous solution,Anal. Chem. 46 (8), 977–981.Google Scholar
  20. Dóbé, S., Temps, F., Böhland, T., and Wagner, H. Gg., 1985, The reaction of CH2OH radicals with O2 studied by laser magnetic resonance technique,Z. Naturforsch. 40a, 1289–1298.Google Scholar
  21. FAO Yearbook Production 1988, Food and Agriculture Organization of the United Nations, 42, Rome, Italy, pp. 241–252.Google Scholar
  22. Geiger, G. and Huber, J. R., 1981, Photolysis of dimethylnitrosamine in the gas phase,Helv. Chim. Acta 64 (4), (No. 92), 989–995.Google Scholar
  23. Glasson, W. A., 1979, An experimental evaluation of atmospheric nitrosamine formation,Environ. Sci. Tech. 13 (9), 1145–1146.Google Scholar
  24. Grönberg, L., Lövkist, P., and Jönsson, J. Å., 1992a, Determination of aliphatic amines in air by membrane enrichment directly coupled to a gas chromatograph,Chromatographia 33 (1/2), 77–82.Google Scholar
  25. Grönberg, L., Lövkist, P., and Jönsson, J. Å., 1992b, Measurement of aliphatic amines in ambient air and rainwater,Chemosphere 24 (10), 1533–1540.Google Scholar
  26. Gundel, L. A., Chang, S. G., Clemenson, M. S., Markowitz, S. S., and Novakov, T., 1979, Characterization of particulate amines, in D. Grosjean (ed.),Nitrogenous Air Pollutants, Chemical and Biological Implications, Ann Arbour Science Publishers, Ann Arbour. MI, pp. 211–220.Google Scholar
  27. Hanst, P. L., Spencer, J. W., and Miller, M., 1977, Atmospheric chemistry of N-nitroso-dimethylamine,Environ. Sci. Tech. 11 (4), 403–405.Google Scholar
  28. Heyer, J., 1990,Der Kreislauf des Methans, Mikrobiologie/Ökologie/Nutzung, Akademie-Verlag, Berlin.Google Scholar
  29. Hutchinson, G. L., Mosier, A. R., and Andre, C. E., 1983, Ammonia and amine emissions from a large cattle feedlot,J. Environ. Qual. 11 (2), 288–293.Google Scholar
  30. International Panel on Climatic Change (IPCC, 1992), in J. T. Houghton, B. A. Callander, and S. K. Varney (eds.),Climatic Change, Cambridge University Press, New York.Google Scholar
  31. Klein, G. and Steiner, M., 1928, Stickstoffbasen im Eiweißabbau höherer Pflanzen, I. Ammoniak und flüchtige Amine,Jahr. Wiss. Bot. 68, 602–710.Google Scholar
  32. Kneip, T. J., Daisey, J. M., Solomon, J. J., and Hershman, R. J., 1983,N-Nitroso compounds: Evidence for their presence in airborne particles,Science 221, 1045–1047.Google Scholar
  33. Lazarou, Y. G. and Pagagiannakopoulos, P., 1993, Kinetic studies of the reactions of atomic chlorine withN-methylmethyleneimine and 1,3,5-trimethylhexahydro-1,3,5-triazine,J. Phys. Chem. 96, 4468–4472.Google Scholar
  34. Levina, T. E., 1988, Hygienic significance of aliphatic amines in the air of pig houses,Veterinariya Moskva 8, 26f [in Russian].Google Scholar
  35. Levina, T. E., 1989, Diethylamine in the air of pig houses,Veterinariya Moskva 12, 22f [in Russian].Google Scholar
  36. Lin, M. C., He, Y., and Melius, C. F., 1992, Communication: Implications of the HCN → HNC process to high-temperature nitrogen-containing fuel chemistry,Int. J. Chem. Kinet. 24, 1103–1107.Google Scholar
  37. Lindley, C. R. C., Calvert, J. G., and Shaw, J. H., 1979, Rate studies of the reactions of the (CH3)2N radical with O2, NO, and NO2,Chem. Phys. Lett. 67 (1), 57–62.Google Scholar
  38. Lobert, J. M., Scharffe, D. H., Hao, Wei-Min, Kuhlbusch, T. A., Warneck, P., and Crutzen, P. J., 1991, Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds, in J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, MIT Press, Cambridge, MA.Google Scholar
  39. McElroy, M. B. and McConnel, J. C., 1971, Nitrous oxide: A natural source of stratospheric NO,J. Atmos. Sci. 28, 1095–1098.Google Scholar
  40. Miller, J. A. and Bowman, C. T., 1991, Kinetic modeling of the reduction of nitric oxide in combustion products by isocyanic acid,Int. J. Chem. Kinet. 23, 289–313.Google Scholar
  41. Miller, J. C. and Miller, J. N., 1984,Statistics for Analytical Chemistry, Ellis Horwood Series in Analytical Chemistry, Ellis Horwood, Chichester, GB.Google Scholar
  42. Milligan, D. E. and Jacox, M. E., 1963, Infrared spectroscopic evidence for the species HNC,J. Chem. Phys. 39 (3), 712–715.Google Scholar
  43. Mosier, A. R., Andre, C. E., and Viets Jr., F. G., 1973, Identification of aliphatic amines volatilized from cattle feedyard,Environ. Sci. Tech. 7 (7), 642–644.Google Scholar
  44. Pitts Jr., J. N., Grosjean, d., Van Cauwenberghe, K., Schmid, J. P., and Fitz, D. R., 1978, Photooxidation of aliphatic amines under simulated atmospheric conditions: Formation of nitrosamines, nitramines, amides, and photochemical oxidant,Environ. Sci. Tech. 12 (8), 946–953.Google Scholar
  45. Schade, G. W., 1993, Emissionen volatiler, aliphatischer Amine aus intensiver Viehhaltung, Thesis, Johannes Gutenberg Universität, Mainz, Germany.Google Scholar
  46. Seuwen, R., 1990, Bestimmung volatiler, aliphatischer Amine in Rauchgasen bei der Verbrennung pflanzlicher Biomasse, Thesis, Johannes Gutenberg Universität, Mainz, Germany.Google Scholar
  47. Steiner, M. and Löffler, H., 1929, Stickstoffbasen im Eiweißabbau höherer Pflanzen, II. Histochemische Studien über Verbreitung, Verteilung und Wandel des Ammoniaks und der flüchtigen Amine,Jahr. Wiss. Bot. 71, 463–532.Google Scholar
  48. Tuazon, E. C., Carter, W. P. L., Atkinson, R., Winer, A. M., and Pitts Jr., J. N., 1978, Fourier transform infrared detection of nitramines in irradiated amine-NOx systems,Environ. Sci. Tech. 12 (8), 954–958.Google Scholar
  49. Tuazon, E. C., Carter, W. P. L., Atkinson, R., Winer, A. M., and Pitts Jr., J. N., 1984, Atmospheric reactions ofN-nitrosodimethylamine and dimethylnitramine,Environ. Sci. Tech. 18 (1), 49–54.Google Scholar
  50. Van Neste, A. and Duce, R. A., 1987, Methylamines in the marine atmosphere,Geophys. Res. Lett. 14 (7), 711–714.Google Scholar
  51. Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T., and Hansen, J. E., 1976, Greenhouse effects due to man-made perturbations of trace gases,Science 194, 685–690.Google Scholar
  52. Warneck, P., 1988, Chemistry of the natural atmosphere,Int. Geophysics Series 41, Academic Press, London.Google Scholar
  53. Zehnder, A. J. B., 1988, Biology of anaerobic microorganisms,Wiley Series in Ecological and Applied Microbiology, Wiley-Interscience Publ., Wiley, Chichester, GB.Google Scholar
  54. Zimnal, S., 1979, Study of animal odor air pollution under henhouse and pigpen conditions,Acta Agrar. Silv. Ser. Zootech. 18 (1–2), 161–187 [in Polish].Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Gunnar W. Schade
    • 1
  • Paul J. Crutzen
    • 1
  1. 1.Division of Atmospheric ChemistryMax Planck Institute of ChemistryMainzGermany

Personalised recommendations