Advertisement

Journal of Atmospheric Chemistry

, Volume 22, Issue 3, pp 285–302 | Cite as

Solubilities of pyruvic acid and the lower (C1-C6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions

  • I. Khan
  • P. Brimblecombe
  • S. L. Clegg
Article

Abstract

Henry's law constantsK′H (mol kg−1 atm−1) have been determined at 298.15 K for the following organic acids: formic acid (5.53±0.27×103); acetic acid (5.50±0.29×103); propionic acid (5.71±0.34×103);n-butyric acid (4.73±0.18×103); isobutyric acid (1.13±0.12×103); isovaleric acid (1.20±0.11×103) and neovaleric acid (0.353±0.04×103). They have also been determined fromT=278.15 K toT=308.15 K forn-valeric acid (ln(K′H)=−14.3371+6582.96/T);n-caproic acid (ln(K′H)=−13.9424+6303.73/T) and pyruvic acid (ln(K′H)=−4.41706+5087.92/T). The influence of 9 salts on the solubility of pyruvic acid at 298.15 K has been measured. Pyruvic acid is soluble enough to partition strongly into aqueous atmospheric aerosols. Other acids require around 1 g of liquid water m−3 (typical of clouds) to partition significantly into the aqueous phase. The degree of partitioning is sensitive to temperature. Considering solubility and dissociation (to formate) alone, the ratio of formic acid to acetic acid in liquid water in the atmosphere (at equilibrium with the gas phase acids) is expected to increase with rising pH, but show little variation with temperature.

Key words

Henry's law solubility removal salt effect formic acid acetic acid propionic acid n-butyric acid isobutyric acid n-valeric acid isovaleric acid neovaleric acid n-caproic acid pyruvic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M. O., Talbot, R. W., and Li, S.-M., 1987, Atmospheric measurements of pyruvic and formic acid,J. Geophys. Res. 92, 6635–6641.Google Scholar
  2. Burger, W. R. and Garrett, W. D., 1976, Surface active organic materials in air over the Mediterranean and over the eastern equatorial Pacific,J. Geophys. Res. 81, 3151–3157.Google Scholar
  3. Chameides, W. L. and Davis, D. D., 1983, Aqueous phase source for formic acid in clouds,Nature 304, 427–429.Google Scholar
  4. Clegg, S. L., 1986, Ph.D. Thesis, University of East Anglia, Norwich.Google Scholar
  5. Clegg, S. L. and Brimblecombe, P., 1985, The solubility of methanesulphonic acid and its implications for atmospheric chemistry,Environ. Technol. Lett. 6, 269–278.Google Scholar
  6. Clegg, S. L. and Brimblecombe, P., 1986, The dissociation constant and Henry's law constant of HCl in aqueous solution,Atmos. Environ. 20, 2483–2485.Google Scholar
  7. Clegg, S. L. and Brimblecombe, P., 1990a, The solubility and activity coefficient of oxygen in salt solutions and brines,Geochim. Cosmochim. Acta 54, 3315–3328.Google Scholar
  8. Clegg, S. L. and Brimblecombe, P., 1990b, The solubility of volatile electrolytes, in D. C. Melchior and R. L. Bassett (eds.),Chemical Modeling of Aqueous Systems II, American Chemical Society, Washington, pp. 58–73.Google Scholar
  9. CRC Handbook of Chemistry and Physics, 1984, Weast, R. C. (ed.), 64th edn., CRC Press, Boca Raton, FL.Google Scholar
  10. Cronn, D. R., Charlson, R. J., Knights, R. L., Crittenden, A. L., and Appel, B. R., 1977, A survey of the molecular nature of primary and secondary components of particles in urban air by high-resolution mass spectroscopy,Atmos. Environ. 11, 929–937.Google Scholar
  11. Fisher, M. and Warneck, P., 1991, The dissociation constant of pyruvic acid: determination by spectrophotometric measurements,Ber. Bunsenges. Phys. Chem. 95, 523–527.Google Scholar
  12. Graedel, T. E. and Weschler, C. J., 1981, Chemistry within aqueous atmospheric aerosols and rain drops,Rev. Geophys. Space Phys. 19, 505–539.Google Scholar
  13. Grosjean, D., 1983, Atmospheric reactions of pyruvic acid,Atmos. Environ. 17, 2379–2382.Google Scholar
  14. Grosjean, D., 1989, Organic acids in southern California air: ambient concentrations, mobile source emissions, in situ formation and removal processes,Environ. Sci. Technol. 23, 1506–1514.Google Scholar
  15. Grosjean, D., Cauwenberghe, K. V., Schmid, J. P., Kelley, P. E., and Pitts Jr., J. N., 1978, Identification of C3-C10 aliphatic dicarboxylic acids in airborne particulate matter,Environ. Sci. Technol. 12, 313–317.Google Scholar
  16. Harned, H. S. and Embree, N. D., 1934, The dissociation constant of formic acid from 0 to 60°,J. Am. Chem. Soc. 56, 1042–1044.Google Scholar
  17. Harned, H. S. and Ehlers, R. W., 1933a, The dissociation constant of acetic acid from 0 to 60° centigrade,J. Am. Chem. Soc. 55, 652–656.Google Scholar
  18. Harned, H. S. and Ehlers, R. W., 1933b, The dissociation constant of propionic acid from 0 to 60°,J. Am. Chem. Soc. 55, 2379–2383.Google Scholar
  19. Kawamura, K. and Gagosian, R. B., 1990, Mid-chain ketocarboxylic acids in the remote marine atmosphere: distribution patterns and possible formation mechanisms,J. Atmos. Chem. 11, 107–122.Google Scholar
  20. Kawamura, K., Ng, L.-L., and Kaplan, R. I., 1985, Determination of organic acids (C1-C10) in the atmosphere, motor exhausts, and engine oils,Environ. Sci. Technol. 19, 1082–1086.Google Scholar
  21. Keene, W. C. and Galloway, J. N., 1984, Organic acidity in precipitation of north America,Atmos. Environ. 18, 2491–2497.Google Scholar
  22. Keene, W. C. and Galloway, J. N., 1988, The biogeochemical cycling of formic and acetic acids through the troposphere: an overview of current understanding,Tellus 40B, 322–334.Google Scholar
  23. Khan, I., Brimblecombe, P., and Clegg, S. L., 1992, The Henry's law constants of pyruvic and methacrylic acids,Environ. Technol. 13, 587–593.Google Scholar
  24. Levsen, K., Behnert, S., Prieb, B., Svoboda, M., Winkeler, H. D., and Zietlow, J., 1990, Organic compounds in precipitation,Chemosphere 21, 1037–1061.Google Scholar
  25. Long, F. A. and McDevit, W. F., 1952, Activity coefficients of nonelectrolyte solutes in aqueous salt solutions,Chem. Rev. 51, 119–169.Google Scholar
  26. Lunde, G., Gether, J., Gjos, N., and Stobet Lande, M. B., 1977, Organic micropollutants in precipitation in Norway,Atmos. Environ. 11, 1007–1014.Google Scholar
  27. Pitzer, K. S., 1991, Ion interaction approach: theory and data correlation, in K. S. Pitzer (ed.),Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton, FL, Chap. 3.Google Scholar
  28. Scarano, E., Gay, G., and Forina, M., 1971, Hydrogen chloride partial pressure of dilute hydrogen chloride-concentrated lithium chloride aqueous solutions,Anal. Chem. 43, 206–211.Google Scholar
  29. Schuetzle, D., Cronn, D., and Crittenden, A. L., 1975, Molecular composition of secondary aerosol and its possible origin,Environ. Sci. Technol. 9, 838–845.Google Scholar
  30. Seinfeld, J. H., 1986,Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York.Google Scholar
  31. Servant, J., Kouadio, G., Cros, B., and Delmas, R., 1991, Carboxylic monoacids in the air of Mayombe Forest (Congo): role of the forest as a source or sink,J. Atmos. Chem. 12, 367–380.Google Scholar
  32. Talbot, R. W., Andreae, M. O., Berresheim, H., Jacob, D. J., and Beecher, K. M., 1990, Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia, 2. Wet season,J. Geophys. Res. 95, 16799–16811.Google Scholar
  33. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, I. H., Bailey, S. M., Churney, K. L., and Nuttall, R. L., 1982, The NBS tables of chemical thermodynamic properties,J. Phys. Chem. Ref. Data 11, Suppl. 2, 392 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • I. Khan
    • 1
  • P. Brimblecombe
    • 2
  • S. L. Clegg
    • 2
  1. 1.Department of ChemistryUniversity of PeshawarPeshawarPakistan
  2. 2.School of Environmental SciencesUniversity of East AngliaNorwichU.K.

Personalised recommendations