Advertisement

Journal of Atmospheric Chemistry

, Volume 19, Issue 1–2, pp 189–229 | Cite as

Computer modelling of clouds at Kleiner Feldberg

  • R. N. Colvile
  • R. Sander
  • T. W. Choularton
  • K. N. Bower
  • D. W. F. Inglis
  • W. Wobrock
  • D. Schell
  • I. B. Svenningsson
  • A. Wiedensohler
  • H. -C. Hansson
  • A. Hallberg
  • J. A. Ogren
  • K. J. Noone
  • M. C. Facchini
  • S. Fuzzi
  • G. Orsi
  • B. G. Arends
  • W. Winiwarter
  • T. Schneider
  • A. Berner
Article

Abstract

The airflow, cloud microphysics and gas- and aqueous-phase chemistry on Kleiner Feldberg have been modelled for the case study of the evening of 1 November 1990, in order to calculate parameters that are not easily measured in the cloud and thus to aid the interpretation of the GCE experimental data-set. An airflow model has been used to produce the updraught over complex terrain for the cloud model, with some care required to ensure realistic modelling of the strong stable stratification of the atmosphere. An extensive set of measurements has been made self-consistent and used to calculate gas and aerosol input parameters for the model. A typical run of the cloud model has calculated a peak supersaturation of 0.55% which occurs about 20 s after entering cloud where the updraught is 0.6 m s−1. This figure has been used to calculate the efficiency with which aerosol particles were scavenged; it is higher than that calculated by other methods, and produces a cloud with slightly too many droplets. A broad cloud droplet size spectrum has been produced by varying the model inputs to simulate turbulent mixing and fluctuations in cloud parameters in space and time, and the ability of mixing processes near cloud-base to produce a lower peak supersaturation is discussed. The scavenging of soluble gases by cloud droplets has been observed and departures from Henry's Law in bulk cloud-water samples seen to be caused by variation of pH across the droplet spectrum and the inability of diffusion to adjust initial distributions of highly soluble substances across the spectrum in the time available. Aqueous-phase chemistry has been found to play a minor role in the cloud as modelled, but circumstances in which these processes would be more important are identified.

Key words

Cloud model airflow model cloud chemistry cloud microphysics aerosols Henry's Law nitric acid cloud-water acidity turbulence mixing scavenging Kleiner Feldberg GCE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arends, B. G., Kos, G. P. A., Maser, R., Schell, D., Wobrock, W., Winkler, P., Ogren, J. A., Noone, K. J., Hallberg, A., Svenningsson, I. B., Wiedensohler, A., Hansson, H.-C., Berner, A., Solly, I., and Kruisz, C., 1994, Microphysics of clouds at Kleiner Feldberg,J. Atmos. Chem. 19, 59–85 (this issue).Google Scholar
  2. Baker, M. B., Blyth, A. M., Carruthers, D. J., Caughey, S. J., Choularton, T. W., Conway, B. J., Fullarton, G., Gay, M. J., Latham, J., Mill, C. S., Smith, M. H., Stromberg, I. M., 1982, Field studies of the effect of entrainment upon the structure of clouds at Great Dun Fell,Quart. J. Royal Meteorol. Soc. 108, 899–916.Google Scholar
  3. Bower, K. N., Hill, T. A., Coe, H., Choularton, T. W., 1991, SO2 oxidation in an entraining cloud model with explicit microphysics,Atmos. Environ. 25A, 2401–2418.Google Scholar
  4. Carruthers, D. J., 1982, PhD Thesis, University of Manchester Institute of Science and Technology, Appendix I.Google Scholar
  5. Carruthers, D. J. and Choularton, T. W., 1982, Airflow over hills of moderate slope,Quart. J. Royal Meteorol. Soc. 108, 603–624.Google Scholar
  6. Carruthers, D. J. and Hunt, J. C. R., 1990, Fluid mechanics of airflow over hills: Turbulence, fluxes and waves in the boundary layer,Amer. Meteorol. Soc. Meteorol. Monogr. 23(45, Chapter 5, pp. 83–103.Google Scholar
  7. Colvile, R. N., Choularton, T. W., Gallagher, M. W., Wicks, A. J., Downer, R. M., Tyler, B. J., Hargreaves, K. J., Storeton-West, R., Fowler, D., Cape, J. N., Dollard, G. J., Davies, T. J., Jones, B. M. R., Penkett, S. A., Bandy, B. J., and Burgess, R., 1994, Observation on Great Dunn Fell of the pathways by which oxides of nitrogen are converted to nitrate,Atmos. Environ. 28, 397–408.Google Scholar
  8. Dlugi, R., Forkel, R., and Seidl, W., 1990,Chemische Reaktionen in kondensierender Atmosphäre, Abschlußbericht Forschungsvorhaben 325-4007-0744203 3 des BMFT Meteorologisches Institut der Universität München.Google Scholar
  9. Flossmann, A. I., 1991, The scavenging of two different types of marine aerosol particles calculated using a two-dimensional detailed cloud model,Tellus 43B, 301–321.Google Scholar
  10. Fuzzi, S., Facchini, M. C., Schell, D., Wobrock, W., Winkler, P., Arends, B. G., Kessel, M., Möls, J. J., Pahl, S., Schneider, T., Berner, A., Solly, I., Kruisz, C., Kalina, M., Fierlinger, H., Hallberg, A., Vitali, P., Santoli, L., and Tigli, G., 1994, Multiphase chemistry and acidity of clouds at Kleiner Feldberg,J. Atmos. Chem. 19, 87–106 (this issue).Google Scholar
  11. Hallberg, A., Ogren, J. A., Noone, K. J., Okada, K., Heintzenberg, J., and Svenningsson, L. B., 1994, The influence of aerosol particle composition on cloud droplet formation,J. Atmos. Chem. 19, 000–000 (this issue).Google Scholar
  12. Harrison, R. M. and Pio, C. A., 1983, Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin,Atmos. Environ. 17, 1733–1738.Google Scholar
  13. Hegg, Dean A., Yuen, Po-Fat, and Larson, Timothy V., 1992, Modelling the effects of heterogeneous cloud chemistry on the marine particle size distribution,J. Geophys. Res. 97D, 12927–12933.Google Scholar
  14. Hunt, J. C. R. and Snyder, W. H., 1980, Experiments on stably and neutrally stratified flow over a model three-dimensional hill,J. Fluid Mech. 96, 671–704.Google Scholar
  15. Hunt, J. C. R., Leibovich, S., and Richards, K. J., 1988, Turbulent shear flow over low hills,Quart. J. Royal Meteorol. Soc. 114, 1435–1470.Google Scholar
  16. Hunt, J. C. R., Richards, K. J., and Brighton, P. W. M., 1988, Stably stratified shear flow over low hills,Quart. J. Royal Meteorol. Soc. 114, 859–886.Google Scholar
  17. Jaenicke, R., 1987, Aerosol physics and chemistry,Landolt-Börnstein New Series V/4b, Springer Verlag, Berlin.Google Scholar
  18. Kitto, Abdul-Massih N. and Harrison, Roy M., 1992, Nitrous and nitric acid measurements at sites in south-east England,Atmospheric Environment 26A, 235–241.Google Scholar
  19. Lavery, Thomas F., Green, Benjamin R., Egan, Bruce A., and Schiermeier, Francis A., 1983, The EPA complex terrain model development program,AMS 6th Sympos. Turbulence and Diffusion, Boston, pp. 126–130.Google Scholar
  20. Lee, I. Y. and Pruppacher, H. R., 1977, A comparative study of the drowth of the clouds by condensation using an air parcel model with and without entrainment,Pageoph. 115, 523–545.Google Scholar
  21. Milford, J. B. and Davidson, C. I., 1985, The sizes of particulate trace elements in the atmosphere — a review,J. Air Pollut. Control Assoc. 35, 1249–1260.Google Scholar
  22. Noone, Kevin J., Hansson, Hans-Christen, and Mallant, Ronald K. A. M., 1992, Droplet sampling from crosswinds: An inlet efficiency calibration,J. Aerosol. Sci. 23, 153–164.Google Scholar
  23. Pandis, S. N. and Seinfeld, J. H., 1991, Should bulk cloudwater samples obey Henry's Law?J. of Geophys. Res. 96D, 10791–10798.Google Scholar
  24. Sander, Rolf, Lelieveld, Jos, and Crutzen, Paul J., 1994, Model calculations of the nighttime chemistry of nitrogen and sulfur compounds in size resolved droplets of an orographic cloud,J. Atmos. Chem. (in press).Google Scholar
  25. Schell, D., Georgii, H. W., Maser, R., Jaeschke, W., Arends, B. G., Kos, G. P. A., Winkler, P., Schneider, T., Berner, A., and Kruisz, C., 1992. Intercomparison of fog water samplers,Tellus 44B, 612–631.Google Scholar
  26. Svenningsson, I. B., Hansson, H.-C., Wiedensohler, A., Noone, K. J., Ogren, J. A., Hallberg, A., and Colvile, R. N., 1994, Hygroscopic growth of aerosol particles and its influence on nucleation scavenging in cloud: Experimental results from Kleiner Feldberg,J. Atmos. Chem. 19, 129–152 (this issue).Google Scholar
  27. Winiwarter, W., Fierlinger, H., Puxbaum, H., Facchini, M. C., Arends, B. G., Fuzzi, S., Schell, D., Kaminski, U., Pahl, S., Schneider, T., Berner, A., Solly, I., and Kruisz, C., 1994, Henry's Law and the behaviour of weak acids and bases in fog and cloud,J. Atmos. Chem. 19, 173–188 (this issue).Google Scholar
  28. Winkler, P., Wobrock, W., Colvile, R. N., Schell, D., 1994, The influence of meteorology on clouds at Kleiner Feldberg,J. Atmos. Chem. 19, 37–58 (this issue).Google Scholar
  29. Wobrock, W., Schell, D., Maser, R., Jaeschke, W., Georgii, H. W., Wieprecht, W., Arends, B. G., Möls, J. J., Kos, G. P. A., Fuzzi, S., Facchini, M. C., Orsi, G., Berner, A., Solly, I., Kruisz, C., Svenningsson, I. B., Wiedensohler, A., Hansson, H.-C., Ogren, J. A., Noone, K. J., Hallberg, A., Pahl, S., Schneider, T., Winkler, P., Winiwarter, W., Colvile, R. N., Choularton, T. W., Flossmann, A. I., and Borrmann, S., 1994, The Kleiner Feldberg Cloud Experiment 1990. An overview,J. Atmos. Chem. 19, 3–35 (this issue).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. N. Colvile
    • 1
  • R. Sander
    • 2
  • T. W. Choularton
    • 1
  • K. N. Bower
    • 1
  • D. W. F. Inglis
    • 1
  • W. Wobrock
    • 5
  • D. Schell
    • 5
  • I. B. Svenningsson
    • 3
  • A. Wiedensohler
    • 3
  • H. -C. Hansson
    • 3
  • A. Hallberg
    • 4
  • J. A. Ogren
    • 4
  • K. J. Noone
    • 4
  • M. C. Facchini
    • 6
  • S. Fuzzi
    • 6
  • G. Orsi
    • 6
  • B. G. Arends
    • 7
  • W. Winiwarter
    • 8
  • T. Schneider
    • 9
  • A. Berner
    • 10
  1. 1.Department of Pure & Applied PhysicsUMISTManchesterUK
  2. 2.Air Chemistry DepartmentMax Planck Institut für ChemieMainzGermany
  3. 3.Department of Nuclear PhysicsUniversity of LundLundSweden
  4. 4.Department of MeteorologyStockholm UniversityStockholmSweden
  5. 5.Zentrum für Umweltforschung and Institut für Meteorologie und GeophysikJohann Wolfgang Goethe UniversitätFrankfurt am MainGermany
  6. 6.Istituto FISBAT-C.N.R.BolognaItaly
  7. 7.Netherlands Energy Research FoundationPettenThe Netherlands
  8. 8.Institut für Analytische ChemieTechnische Universität WienViennaAustria
  9. 9.Deutsche WetterdienstMeteorologisches Observatorium HamburgHamburgGermany
  10. 10.Institut für ExperimentalphysikUniversität WienViennaAustria

Personalised recommendations