Advertisement

Journal of comparative physiology

, Volume 77, Issue 1, pp 65–79 | Cite as

Patterns of endothermy in bumblebee queens, drones and workers

  • Bernd Heinrich
Article

Summary

  1. 1.

    The thoracic temperatures (TTh) of captiveBombus edwardsii queens and drones from the current year approached ambient temperatures (TA) at night, but warm-up was frequent throughout the day.

     
  2. 2.

    ABombus vosnesenskii queen which had initiated nest building maintained TTh nearly continuously between 37.4 and 38.8 °C at night and in the daytime. On the other hand, the TTh of an overwintered queen which was not “broody” was close to TA (about 22 °C), except when the bee walked from the nest box and fed on sugar syrup, when TTh approached 40 °C.

     
  3. 3.

    Workers and queens applied themselves closely to cocoons and heated them by body contact. The temperature of the cocoons declined when the attending workers depleted the honey in the nest.

     
  4. 4.

    Bees achieved a large difference between TTh and TA while being stationary when no wing movements were visible. Thoracic temperature subsequently declined when they were made to fly in place while suspended from the thread-like thermocouple leads.

     
  5. 5.

    Workers ofB. edwardsii maintained a mean TTh of 37.3 °C while foraging for nectar fromArctostaphylos otayensis at dawn when there was frost on the ground and TA near the flowers was 2 to 3 °C.

     

Keywords

Sugar Ambient Temperature Drone Nest Building Body Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. A., Heath, J. E.: Temperature regulation in the sphinx moth,Celerio lineata. Nature (Lond.)201, 20–22 (1964).Google Scholar
  2. Bastian, J., Esch, H.: The nervous control of the indirect flight muscles of the honeybee. Z. vergl. Physiol.67, 307–324 (1970).Google Scholar
  3. Bruggemann, P. F.: Insect environment of the high arctic. 10th Int. Congr. Entomol., 1956, vol.1, p. 695–702 (1958).Google Scholar
  4. Büdel, A.: I. Le microclimat de la Ruche. In: Traité de biologie de l'abeille, ed. Rémy Chauvin. Paris: Masson 1968.Google Scholar
  5. Cumber, R. A.: The biology of bumble-bees, with special reference to the production of the worker caste. Trans. R. ent. soc. Lond.100, 1–45 (1949).Google Scholar
  6. Esch, H.: Über die Körpertemperaturen und den Wärmehaushalt vonApis mellifica. Z. vergl. Physiol.43, 305–335 (1960).Google Scholar
  7. Free, J. B.: The effect of social facilitation on the ovary development of bumblebee workers. Proc. roy. ent. Soc.32, 182–184 (1957).Google Scholar
  8. Free, J. B., Butler, C. G.: Bumblebees. London: Coiling 1959.Google Scholar
  9. Free, J. B., Spencer-Booth, J.: Observations of the temperature regulation and food consumption of honeybees (Apis mellifera). J. exp. Biol.35, 930–937 (1958).Google Scholar
  10. Hanegan, J. L., Heath, J. E.: Activity patterns and energetics of the moth,Hyalophora cecropia. J. exp. Biol,53, 611–627 (1970).Google Scholar
  11. Heath, J. E., Josephson, R. L.: Body temperature and singing in the katydid,Neoconocephalus robustus (Orthoptera, Tettigoniidae). Biol. Bull.138, 272–285 (1970).Google Scholar
  12. Heinrich, B.: Temperature regulation in the sphinx moth,Manduca sexta I; II. J. exp. Biol.54, 141–166 (1971).Google Scholar
  13. Heinrich, B.: Temperature regulation in the bumblebee,Bombus vagans: a field study. Science175, 185–187 (1972a).Google Scholar
  14. Heinrich, B.: Energetics of temperature regulation and foraging in a bumblebee,Bombus terricola. J. Comp. Physiol.77, 49–64 (1972b).Google Scholar
  15. Heinrich, B., Bartholomew, G. A.: An analysis of preflight warmup in the sphinx moth,Manduca sexta. J. exp. Biol.55, 223–239 (1971).Google Scholar
  16. Hess, W. R.: Die Temperaturregulierung im Bienenvolk. Z. vergl. Physiol.4, 467–487 (1926).Google Scholar
  17. Heusner, A., Stussi, Th.: Métabolisme énergétique de l'abeille isolée: son rôle dans la thermorégulation de la Ruche. Ins. Soc.11, 239–266 (1964).Google Scholar
  18. Himmer, A.: Ein Beitrag zur Kenntnis des Wärmehaushaltes im Nestbau sozialer Hautflügler. Z. vergl. Physiol.5, 375–389 (1927).Google Scholar
  19. Himmer, A.: Über die Wärme im Hornissennest (Vespa crabro L.). Z. vergl. Physiol.13, 748–761 (1931).Google Scholar
  20. Himmer, A.: Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol. Rev.7, 224–253 (1932).Google Scholar
  21. Himmer, A.: Die Nestwärme beiBombus agrorum F. Biol. Zbl.53, 270–276 (1933).Google Scholar
  22. Ishay, J., Ruttner, F.: Thermoregulation im Hornissennest. Z. vergl. Physiol.72, 423–434 (1971).Google Scholar
  23. Kammer, A. E.: Motor patterns during flight and warm-up in Lepidoptera. J. exp. Biol.48, 89–109 (1968).Google Scholar
  24. Krogh, A., Zeuthen, E.: The mechanism of flight preparation in some inscets. J. exp. Biol.18, 1–10 (1941).Google Scholar
  25. Plowright, R. C., Jay, S. C.: Rearing bumblebee colonies in captivity. J. Apic. Res.5, 155–165 (1966).Google Scholar
  26. Sotavalta, O.: On the thoracic temperature of insects in flight. Ann. Zool. Soc. “Vanamo”16, 1–21 (1954).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Bernd Heinrich
    • 1
  1. 1.Division of EntomologyUniversity of CaliforniaCalifornia

Personalised recommendations