, Volume 5, Issue 3–4, pp 249–257 | Cite as

Genetics and biochemistry of 1,2-dichloroethane degradation

  • Dick B. Janssen
  • Jan R. van der Ploeg
  • Frens Pries


Dichloroethane (1,2-DCE) is a synthetic compound that is not known to be formed naturally. Nevertheless, several pure microbial cultures are able to use it as a sole carbon source for growth. Degradation of 1,2-DCE proceeds via 2-chloroethanol, chloroacetaldehyde and chloroacetate to glycolate. The genes encoding the enzymes responsible for the conversion of 1,2-DCE to glycolic acid have been isolated. The haloalkane dehalogenase and an aldehyde dehydrogenase are plasmid encoded. Two other enzymes, the alcohol dehydrogenase and the haloacid dehalogenase, are chromosomally encoded. Sequence analysis indicates that the haloacid dehalogenase belongs to the L-specific 2-chloroproprionic acid dehalogenases. From the three-dimensional structure and sequence similarities, the haloalkane dehalogenase appears to be a member of the α/β hydrolase fold hydrolytic enzymes, of which several are involved in the degradation of aromatic and aliphatic xenobiotic compounds.

Key words

chlorinated hydrocarbons biodegradation 1,2-dichloroethane alkanes Xanthobacter dehalogenase adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony C & Zatman LJ (1967) The microbial oxidation of methanol. Purification and properties of the alcohol dehydrogenase ofPseudomonas sp. M27. Biochem. J. 104: 953–959Google Scholar
  2. Franken SM, Rozeboom HJ, Kalk KH & Dijkstra BW (1991) Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 10: 1297–1302Google Scholar
  3. Frantz B, Ngai KL, Chatterjee DK, Ornston LN & Chakrabarty AM (1987) Nucleotide sequence and expression ofclcD, a plasmidborne dienelactone hydrolase gene fromPseudomonas sp. strain B13. J. Bacteriol. 169: 704–709Google Scholar
  4. Greer CW, Baumier D & Samson R (1989) Application of on-line sensors during growth of the DCE degrading bacteriumXanthobacter autotrophicus. J. Biotechnol. 12: 261–274Google Scholar
  5. Gschwend PM, Macfarlane JK & Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227: 1033–1035Google Scholar
  6. Hardman DJ & Slater JH (1981) Dehalogenases in soil bacteria. J. Gen. Microbiol. 123: 117–128Google Scholar
  7. Horn JM, Harayama S & Timmis KN (1991) DNA sequence determination of the TOL plasmid (pWWO)xylGFJ genes ofPseudomonas putida: implications for the evolution of aromatic catabolism. Mol. Microbiol. 5: 2459–2474Google Scholar
  8. Janssen DB, Scheper A & Witholt BW (1984) Biodegradation of 2-chloroethanol and 1,2-dichloroethane by pure bacterial cultures. In: Houwink EH & Van der Meer RR (Eds) Innovations in Biotechnology, pp 169–178. Elsevier, AmsterdamGoogle Scholar
  9. Janssen DB, Scheper A, Dijkhuizen L & Witholt B (1985) Degradation of halogenated aliphatic compounds byXanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49: 673–677Google Scholar
  10. Janssen DB, Keuning S & Witholt B (1987a) Involvement of a quinoprotein alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase in 2-chloroethanol metabolism inXanthobacter autotrophicus GJ10. J. Gen. Microbiol. 133: 85–92Google Scholar
  11. Janssen DB, Jager D & Witholt B (1987b) Degradation of n-haloalkanes and α,ω-dihaloalkanes by wild-type and mutants ofAcinetobacter sp. strain GJ70. Appl. Environ. Microbiol. 53: 561–566Google Scholar
  12. Janssen DB, Pries F, Van der Ploeg J, Kazemier B, Terpstra P & Witholt B (1989) Cloning of 1,2-dichloroethane degradation genes ofXanthobacter autotrophicus GJ10, and expression and sequencing of thedhlA gene. J. Bacteriol. 171: 6791–6799Google Scholar
  13. Jones DHA, Barth PT, Byrom D & Thomas CM (1992) Nucleotide sequence of the structural gene encoding a 2-haloalkanoic acid dehalogenase ofPseudomonas putida strain AJ1 and purification of the encoded protein. J. Gen. Microbiol. 138: 675–683Google Scholar
  14. Kawasaki H, Tsuda K, Matsushita I & Tonomura K (1992) Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid fromMoraxella sp. strain B. J. Gen. Microbiol. 138: 1317–1323Google Scholar
  15. Keuning S, Janssen DB & Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase fromXanthobacter autotrophicus GJ10. J. Bacteriol. 163: 635–639Google Scholar
  16. Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M & Yano K (1989) Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacteriumPseudomonas sp. strain KKS102. J. Bacteriol. 171: 2740–2747Google Scholar
  17. La Roche SD & Leisinger T (1991) Identification ofdcmR, the regulatory gene governing expression of dichloromethane dehalogenase inMethylobacterium sp. strain DM4. J. Bacteriol. 173: 6714–6721Google Scholar
  18. Menn F-M, Zylstra GJ & Gibson DT (1991) Location and sequence of thetodF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase inPseudomonas putida F1. Gene 104: 91–94Google Scholar
  19. Motosugi K & Soda K (1983) Microbial degradation of synthetic organochlorine compounds. Experientia 39: 1214–1220Google Scholar
  20. Morgan P & Watkinson RJ (1989) Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol. Rev. 63: 277–300Google Scholar
  21. Murdiyatmo U, Asmara W, Tsang JSH, Baines AJ, Bull AT & Hardman DJ (1992) Molecular biology of the 2-haloacid halidohydrolase IVa fromPseudomonas cepacia MBA4. Biochem. J. 284: 87–93Google Scholar
  22. Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K & Takagi M (1993) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of γ-hexachlorohexane inPseudomonas paucimobilis. J. Bacteriol. 175: 6403–6410Google Scholar
  23. Nordlund I & Shingler V (1990) Nucleotide sequence of themeta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase fromPseudomonas CF600. Biochim. Biophys. Acta 1049: 227–230Google Scholar
  24. Ollis DL, Cheah E, Cygler M, Dijkstra BW, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG & Goldman A (1992) The α/β hydrolase fold. Prot. Engin. 5: 197–211Google Scholar
  25. Perkins EJ, Gordon MP, Caceres O & Lurquin PF (1992) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol. 172: 2351–2359Google Scholar
  26. Pries F, Kingma J, Pentenga M, van Pouderoyen G, Jeronimus-Stratingh CM, Bruins AP & Janssen DB. (1994a) Site-directed mutagenesis and oxygen isotope incorporation studies of the nucleophilic aspartate of haloalkane dehalogenase. Biochemistry. 33: 1242–1247Google Scholar
  27. Pries F, van den Wijngaard AJ, Bos R, Pentenga M & Janssen DB (1994b). The role of spontaneous cap domain mutations in haloalkane dehalogenase specificity and evolution. J. Biol. Chem. 269: 17490–17494Google Scholar
  28. Pries F, Van der Ploeg JR, Dolfing J & Janssen DB. (1994c) Microbial degradation of halogenated aliphatic compounds: the role of adaptation. FEMS Microbiol. Rev., in pressGoogle Scholar
  29. Schanstra JP, Rink R, Pries F & Janssen DB (1993) Construction of an expression and site-directed mutagenesis system of haloalkane dehalogenase inEscherichia coli. Prot. Expr. Purif. 4: 479–489Google Scholar
  30. Schneider B, Müller R, Frank R & Lingens F (1991) Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases fromPseudomonas sp. strain CBS3. J. Bacteriol. 173: 1530–1535Google Scholar
  31. Scholtz R, Schmuckle A, Cook AM & Leisinger T (1987) Degradation of eighteen 1-monohaloalkanes byArthrobacter sp. strain HA1. J. Gen. Microbiol. 133: 267–274Google Scholar
  32. Slater JH, Weightman AJ & Hall BG (1985) Dehalogenase genes ofPseudomonas putida PP3 on chromosomally located transposable elements. Mol. Biol. Evol. 2: 557–567Google Scholar
  33. Stroeher UH, Karageorgos LE, Morona R & Manning PA (1992) Serotype conversion inVibrio cholerae O1. Proc. Natl. Acad. Sci. USA 89: 2566–2570Google Scholar
  34. Strotmann UJ, Pentenga M & Janssen DB (1990) Degradation of 2-chloroethanol by wild type and mutants ofPseudomonas putida US2. Arch. Microbiol. 154: 294–300Google Scholar
  35. Stucki G & Leisinger T (1983a) Bacterial degradation of 2-chloroethanol proceeds via 2-chloroacetic acid. FEMS Microbiol. Lett. 16: 123–126Google Scholar
  36. Stucki G, Krebser U & Leisinger T (1983b) Bacterial growth on 1,2-dichloroethane. Experientia 39: 1271–1273Google Scholar
  37. Stucki G, Thuer M & Bentz R (1992) Biological degradation of 1,2-dichloroethane under groundwater conditions. Water Res. 26: 273–278Google Scholar
  38. Tardif G, Greer CW, Labbé D & Lau PCK (1991) Involvement of a large plasmid in the degradation of 1,2-dichloroethane byXanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 57: 1853–1857Google Scholar
  39. Thomas AW, Lewington J, Hope S, Topping AW, Weightman AJ & Slater JH (1992) Environmentally directed mutations in the dehalogenase system ofPseudomonas putida strain PP3. Arch. Microbiol. 158: 176–182Google Scholar
  40. Van den Wijngaard AJ, van der Kamp K, van der Ploeg J, Kazemier B, Pries F & Janssen DB (1992) Degradation of 1,2-dichloroethane by facultative methylotrophic bacteria. Appl. Environ. Microbiol. 58: 976–983Google Scholar
  41. Van den Wijngaard AJ, Prins J, Smal AJAC & Janssen DB (1993a) Microbial growth on 2-chloroethylvinylether byAncylobacter aquaticus AD25 and AD27. Appl. Environ. Microbiol. 59: 2777–2783Google Scholar
  42. Van den Wijngaard AJ, Wind RD & Janssen DB (1993b) Kinetics of bacterial growth on chlorinated aliphatic compounds. Appl. Environ. Microbiol. 59: 2041–2048Google Scholar
  43. Van der Meer JR, Eggen RI, Zehnder AJ & de Vos WM (1991) Sequence analysis of thePseudomonas sp strain P51tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J. Bacteriol. 173: 2425–2434Google Scholar
  44. Van der Meer JR, de Vos WM, Harayama S & Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694Google Scholar
  45. Van der Ploeg JR, Van Hall G & Janssen DB (1991) Characterization of the haloacid dehalogenase fromXanthobacter autotrophicus GJ10 and sequencing of thedhlB gene. J. Bacteriol. 173: 7925–7933Google Scholar
  46. Van der Ploeg JR, Smidt MP, Landa AS & Janssen DB (1994). Identification of chloroacetaldehyde dehydrogenase involved in 1,2-dichloroethane degradation. Appl. Environ. Microbiol. 60: 1599–1605Google Scholar
  47. Verschueren KHG, Kingma J, Rozeboom HJ, Kalk KH, Janssen DB & Dijkstra BW (1993a) Crystallographic and fluorescence studies of the interaction of haloalkane dehalogenase with halide ions. Studies with halide compounds reveal a halide binding site in the active site. Biochemistry 32: 9031–9037Google Scholar
  48. Vershueren KHG, Seljée F, Rozeboom HJ, Kalk KH, Dijkstra BW (1993b) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363: 693–698Google Scholar
  49. Zhao S, Sandt CH, Feulner G, Vlazny DA, Gray JA & Hill CW (1993)Rhs elements ofEscherichia coli K-12: complex composites of shared and unique components that have different evolutionary histories. J. Bacteriol. 175: 2799–2808Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Dick B. Janssen
    • 1
  • Jan R. van der Ploeg
    • 1
  • Frens Pries
    • 1
  1. 1.Department of BiochemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations