Advertisement

Journal of comparative physiology

, Volume 83, Issue 4, pp 331–360 | Cite as

Polarization sensitivity of individual retinula cells

  • Allan W. Snyder
Article

Summary

This paper elucidates the influence of the structure of a rhabdom on the polarization sensitivity of its retinula cells. The terminology polarization sensitivity (PS) and dichroic sensitivity (Δ) needs clarification. Δ expresses the directional property of the local microvillar medium and is independent of the gross morphology of the rhabdom. The PS of a retinula cell is that found by single cell electrophysiology and depends strongly on the gross morphology of the rhabdom. Both Δ and PS are ratios of the effects of theE vector of linear polarized light parallel to, to that perpendicular to the microvilli. From the theoretical analysis and its correlation with experiments the following is concluded.

Keywords

Single Cell Theoretical Analysis Clarification theE Vector Directional Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, H., Zwehl, V. von Die Sehzellen der Insekten als Analysatoren für polarisiertes Licht. Z. vergl. Physiol.46, 1–17 (1962).Google Scholar
  2. Autrum, H., Zwehl, V. von: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol.48, 357–384 (1964).Google Scholar
  3. Boschek, C. B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly,Musca domestica. Z. Zellforsch.118, 369–409 (1971).Google Scholar
  4. Carne, P. B.: The characteristics and behavior of the sawflyPerga affinis affinis (Hymenoptera). Aust. J. Zool.10, 1–34 (1962).Google Scholar
  5. Dartnall, H. J. A.: Handbook of Sensory Physiology, vol. VII/1, chap. 4, 7 and 12. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  6. Eakin, R. M.: Structure of invertebrate photoreceptors. In: Handbook of Sensory Physiology, ed. Dartnall, H. J. A., chap. 16. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  7. Eguchi, E., Waterman, T. H.: Fine structure patterns in crustacean rhabdoms. In: Proc. internat, symp. on the function organization of the compound eye. Oxford-New York: Pergamon Press 1966.Google Scholar
  8. Eguchi, E., Waterman, T. H.: Cellular basis for polarized light perception in the spider crab,Libinice. Z. Zellforsch.84, 87–101 (1968).Google Scholar
  9. Eguchi, E., Waterman, T. H., Akiyama, J.: Cellular basis of wavelength discrimination in the crayfish. American Zoologist12, 252 (1972).Google Scholar
  10. Frisch, K. von: The dance language and orientation of bees. Cambridge: Harvard University Press 1967.Google Scholar
  11. Goldsmith, T. H.: Fine structure of the retinulae in the compound eye of the honey bee. J. Cell Biol.14, 489–494 (1962).Google Scholar
  12. Gribakin, F. G.: Cellular basis of colour vision in the honey bee. Nature (Lond.)223, 639–641 (1969).Google Scholar
  13. Gribakin, F. G.: The distribution of the long wave photoreceptors in the compound eye of the honey bee as revealed by selective osmic staining. Visions Res.12, 1225–1230 (1972).Google Scholar
  14. Hagins, W. A., Liebman, P. A.: The relationship between photochemical and electrical processes in living squid photoreceptors. Abstracts of Biophysical Society 7th Annual Meeting, New York, N.Y. ME6 1963.Google Scholar
  15. Kirschfeld, K.: Absorption properties of photopigments in single rods, cones and rhabdomeres. In: Processing of optical data by organisms and by machines. New York: Academic Press 1969.Google Scholar
  16. Kirschfeld, K.: Vision of Polarized light, Symposia proceedings of the IV. International Biophysics Congress, Moscow 1972.Google Scholar
  17. Langer, H.: Spektrophotometrische Untersuchungen der Absorptionseigenschaften einzelner Rhabdomere im Facettenauge. Zool. Anz., Suppl.29, 329–338 (1965).Google Scholar
  18. Langer, H., Thorell, B.: Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell. Res.41, 673–676 (1966).Google Scholar
  19. Liebman, P. A.: Microspectrophotometry of photoreceptors. In: Handbook of Sensory Physiology, VII/1 (editor H. J. A. Dartnall). Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  20. Melamed, J., Trujillo-Cenóz, O.: The fine structure of the central cells in the ommatidia of dipterans. J. Ultrastruct. Res.21, 313–334 (1968).Google Scholar
  21. Menzel, R.: Feinstruktur des Komplexauges der Roten Waldameise,Formica polyctena (Hymenoptera, Formicidae). Z. Zellforsch.127, 356–373 (1972a).Google Scholar
  22. Menzel, R.: Functional morphology of the Hymenoptera eye. In: Processing of information in the visual system of arthropods (edited by R. Wehner). Berlin-Heidelberg-New York: Springer 1972b.Google Scholar
  23. Meyer-Rochow, V. B.: A crustacean-like organization of insect-rhabdoms. Cytobiologie4, 241–249 (1971).Google Scholar
  24. Meyer-Rochow, V. B.: The eyes ofCreophilus erythrocephalus F. andSartallus signatus sharp (Staphylinidae: Coleoptera). Z. Zellforsch.133, 59–86 (1972).Google Scholar
  25. Moody, M. F.: Photoreceptor organelles in animals. Biol. Rev.39, 43–86 (1964).Google Scholar
  26. Moody, M. F., Parriss, J. R.: The discrimination of polarized light byOctopus: a behavioural and morphological study. Z. vergl. Physiol.44, 268–291 1(962).Google Scholar
  27. Ninomiya, N., Tominaga, Y., Kuwabara, M.: The fine structure of the compound eye of the damsel-fly. Z. Zellforsch.98, 17–32 (1969).Google Scholar
  28. Perrelet, A.: The fine structure of the retina of the honey bee drone. Z. Zellforsch.108, 530–562 (1970).Google Scholar
  29. Roth, H., Menzel, R.: ERG and selective adaptation inFormica polyctena. In: Processing of information in the visual system of arthropods (ed. by R. Wehner). Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  30. Shaw, S. R.: Interreceptor coupling in ommatidia of drone honey bee and locust compound eyes. Vision Res.9, 999–1029 (1969a).Google Scholar
  31. Shaw, S. R.: Sense cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res.9, 1031–1041 (1969b).Google Scholar
  32. Snyder, A. W.: Optical properties of invertebrate photoreceptors. In: The compound eye and vision of insects (Ed. G. A. Horridge). Oxford: University Press 1973.Google Scholar
  33. Snyder, A. W., Pask, C.: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol. (in press) (1973).Google Scholar
  34. Walcott, B.: Cell movement on light adaptation in the retina ofLethocerus (Belostomatidae, Hemiptera). Z. vergl. Physiol.74, 1–16 (1971).Google Scholar
  35. Walcott, B.: Unit, studies on receptor movement in the retina ofLethocerus (Belostomatidae, Hemiptera). Z. vergl. Physiol.74, 17–25 (1971).Google Scholar
  36. Waterman, T. H.: Visual direction finding by fishes. In: Animal orientation and navigation (Editor S. R. Galleret al.). Washington: Nasa 1972.Google Scholar
  37. Waterman, T. H., Fernandez, H. R.:E-vector and wavelength discrimination by retinular cells of the crayfishProcambarus. Z. vergl. Physiol.68, 154–174 (1970).Google Scholar
  38. Waterman, T. H., Fernandez, H. B., Goldsmith, T. H.: Dichroism of photosensitive pigments in rhabdoms of the crayfishOrconectes. J. gen. Physiol.54, 415–432 (1969).Google Scholar
  39. Weale, R. A.: On the birefringence of rods and cones. Pflügers Arch.329, 244–257 (1971).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Allan W. Snyder
    • 1
  1. 1.Institute of Advanced Studies, Research School of Physical SciencesAustralian National UniversityCanberra

Personalised recommendations