Foundations of Physics Letters

, Volume 2, Issue 2, pp 127–149 | Cite as

Quantum field theory cannot provide faster-than-light communication

  • Phillippe H. Eberhard
  • Ronald R. Ross


We spell out a demonstration that, within the framework of quantum field theory, no faster-than-light communication can be established between observers. The steps of the demonstration are detailed enough to pinpoint which properties of the theory have been misinterpreted in previous papers claiming the existence of effects that could permit such communication. The developments described here can also be used to analyze future papers making similar claims.

Key words

quantum mechanics quantum field theory faster-than-light communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Newton, “Relativity and the order of cause and effect in time,” inCausality and Physical Theories; Wayne State University, Detroit, Michigan, 1973 (A. I. P. Conference Proceedings Number 16) (A. I. P., New York, 1974), pp. 49–57.Google Scholar
  2. 2.
    S. S. Schweber,An Introduction to Relativistic Quantum Field Theory (Row, Peterson, & Company, Evanston, 1961).Google Scholar
  3. 3.
    G. C. Hegerfeldt,Phys. Rev. Lett. 54, 2395 (1985).Google Scholar
  4. 4.
    A. Datta, D. Home, and A. Raychaudhuri,Phys. Lett. A 123, 4 (1987).Google Scholar
  5. 5.
    N. Herbert,Found. Phys. 12, 1171 (1982).Google Scholar
  6. 6.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  7. 7.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,Phys. Rev. Lett. 23, 880 (1969).Google Scholar
  8. 8.
    H. P. Stapp,Phys. Rev. D 3, 1303 (1971).Google Scholar
  9. 9.
    J. F. Clauser and M. A. Horne,Phys. Rev. D 10, 526 (1974).Google Scholar
  10. 10.
    J. S. Bell, “The theory of local beables,” preprint Th. 2053, CERN, 1975.Google Scholar
  11. 11.
    P. H. Eberhard,Nuovo Cimento 46B, 392 (1978).Google Scholar
  12. 12.
    H. P. Stapp, “Are faster-than-light influences necessary?” inQuantum Mechanics Versus Local Realism—The Einstein, Podolsky, and Rosen Paradox, F. Selleri, ed. (Plenum, New York, 1988).Google Scholar
  13. 13.
    A. Einstein, B. Podolsky, and N. Rosen,Rhys. Rev. 47, 777 (1935).Google Scholar
  14. 14.
    Appendix D of Ref. 11.Google Scholar
  15. 15.
    G. C. Ghirardi, A. Rimini, T. Weber,Lett. Nuovo Cimento 27, 293 (1980).Google Scholar
  16. 16.
    A. Shimony, “Controllable and uncontrollable non-locality” inProceedings, International Symposium on Foundations of Quantum Mechanics, S. Kamefuchiet al., eds. (Physical Society of Japan, Tokyo, 1983), pp. 225–230.Google Scholar
  17. 17.
    T. F. Jordan,Phys. Lett. 94A, 264 (1983).Google Scholar
  18. 18.
    J. Finkelstein and H. P. Stapp,Phys. Lett. A 126, 159 (1987).Google Scholar
  19. 19.
    M. J. W. Hall,Phys. Lett. A 125, 89 (1987).Google Scholar
  20. 20.
    G. Lindblad,Phys. Lett. A 126, 71 (1987).Google Scholar
  21. 21.
    E. Squires and D. Siegwart,Phys. Lett. A 126, 73 (1987).Google Scholar
  22. 22.
    G. C. Ghirardi, R. Grassi, A. Rimini, and T. Weber,Europhys. Lett. 6, 95 (1988).Google Scholar
  23. 23.
    G. C. Ghirardi, inThe Nature of Quantum Paradoxes, G. Tarozzi and A. van der Merwe, eds. (Kluwer Academic, Dordrecht, 1988), pp. 89–103.Google Scholar
  24. 24.
    C. Cohen-Tannoudji, B. Diu, and F. Laloe,Quantum Mechanics (Wiley-Interscience, New York, 1977).Google Scholar
  25. 25.
    G. C. Hegerfeldt,Phys. Rev. D 10, 3320 (1974).Google Scholar
  26. 26.
    J. F. Perez and I. F. Wilde,Phys. Rev. D 16, 315 (1977).Google Scholar
  27. 27.
    G. C. Hegerfeldt and S. N. M. Ruijsenaars,Phys. Rev. D 22, 377 (1980).Google Scholar
  28. 28.
    J. S. Bell and J. Steinberger, “Weak interactions of kaons,” 65/1524/5-Th. 605, CERN Report, 1965.Google Scholar
  29. 29.
    P. H. Eberhard,Phys. Rev. Lett. 16, 150 (1966).Google Scholar
  30. 30.
    W. K. Wootters and W. H. Zurek,Nature 299, 802 (1982).Google Scholar
  31. 31.
    G. C. Ghirardi, and T. Weber,Nuovo Cimento B 78, 9 (1983).Google Scholar
  32. 32.
    R. J. Glauber,Ann. N. Y. Acad. Sci. 480, 336 (1986).Google Scholar
  33. 33.
    P. H. Eberhard, “A realistic model for quantum theory with a locality property,” Physics Division Report LBL-23483, Lawrence Berkeley Laboratory, 1987. To be published inQuantum Theory and Pictures of Reality (Springer, Heidelberg, 1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Phillippe H. Eberhard
    • 1
  • Ronald R. Ross
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations