Advertisement

Journal of comparative physiology

, Volume 87, Issue 3, pp 203–212 | Cite as

Extraocular perception of polarized light by orienting salamanders

  • Kraig Adler
  • Douglas H. Taylor
Article

Summary

Spatial orientation corresponding to the bearing of thee-vector of linearly polarized light can be demonstrated in sighted and eyeless salamanders (Ambystoma tigrinum) trained under linearly polarized light. However, if opaque polyethylene plastic is inserted over the skull of these animals, whether they are sighted or eyeless, orientation is uniform within the test arena. Bidirectional oriented movement is restored in both groups, however, when transparent plastic is substituted in the same animals. A discussion of the possible mechanism for perception of polarized light by extraocular photoreceptors (EOPs) is given.

Keywords

Polyethylene Arena Spatial Orientation Transparent Plastic Test Arena 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Durch Dressur unter linear polarisiertem Licht wird beiAmbystoma tigrinum sowohl mit als auch ohne Augen eine Orientierung nach deme-Vektor linear polarisierten Lichtes nachgewiesen. Wird jedoch über dem Schädel (unter der Haut) eine opake Polyäthylen-Scheibe eingeschoben, so findet sich weder bei geblendeten noch bei Tieren mit Augen eine Orientierung nach deme-Vektor. Wird die opake Plastikscheibe durch eine transparente ersetzt, so tritt in jedem Fall die Orientierung (± 180 °) wieder auf. Die möglichen Mechanismen der Wahrnehmung polarisierten Lichtes durch extraokulare Rezeptoren werden diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, K.: Extraoptic phase shifting of circadian locomotor rhythms in salamanders. Science164, 1290–1292 (1969)Google Scholar
  2. Adler, K.: The role of extraoptic photoreceptors in amphibian rhythms and orientation: A review. J. Herpetol.4, 99–112 (1970)Google Scholar
  3. Adler, K.: Pineal end organ: Role in extraoptic entrainment of circadian locomotor rhythm in frogs. In: Biochronometry (M. Menaker, ed.), p. 342–350. Washington, D. C.: Nat. Acad. of Sci. 1971Google Scholar
  4. Adler, K., Taylor, D. H.: Polarized light: Detection via extraoptic receptor and its use by orienting salamanders (abstract). Herpetol. Rev.3, 105 (1971)Google Scholar
  5. Bagnara, J. T., Hadley, M. E.: Endocrinology of the amphibian pineal. Amer. Zool.10, 201–216 (1970)Google Scholar
  6. Denton, E. J.: The contributions of the oriented photosensitive and other molecules to the absorption of whole retina. Proc. roy. Soc. B150, 78–94 (1959)Google Scholar
  7. Eakin, R. M.: Evolution of photoreceptors. Evol. Biol.2, 194–242 (1968)Google Scholar
  8. Forward, R. B., Jr., Horch, K. W., Waterman, T. H.: Visual orientation at the water surface by the teleostZenarchopterus. Biol. Bull.143, 112–126 (1972)Google Scholar
  9. Frisch, K. von: The dance language and orientation of bees. Cambridge, Mass.: Belknap Press 1967Google Scholar
  10. Groot, C.: On the orientation of young sockeye salmon (Oncorhynchus nerka) during their seaward migration out of lakes. Behaviour, suppl.14, 8+1–198 (1965)Google Scholar
  11. Hendrickson, A. E., Kelly, D. E.: Development of the amphibian pineal organ; cell proliferation and migration. Anat. Rec.165, 211–228 (1969)Google Scholar
  12. Kelly, D. E.: Developmental aspects of amphibian pineal systems. In: The pineal gland (G. E. Wolstenholme and J. Knight, eds.), p. 53–74. Edinburgh-London: Churchill Livingstone 1971Google Scholar
  13. Kreithen, M. L., Keeton, W. T.: Detection of polarized light by the homing pigeonColumba livia. J. comp. Physiol., submittedGoogle Scholar
  14. Liebman, P. A.:In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J.2, 161–178 (1962)Google Scholar
  15. Montgomery, K. C., Heinemann, E. G.: Concerning the ability of homing pigeons to discriminate patterns of polarized light. Science116, 454–456 (1952)Google Scholar
  16. Moody, M. F.: Photoreceptor organelles in animals. Biol. Rev.39, 43–86 (1964)Google Scholar
  17. Moody, M. F., Parriss, J. R.: The discrimination of polarized light byOctopus: A behavioural and morphological study. Z. vergl. Physiol.44, 268–291 (1961)Google Scholar
  18. Oksche, A.: Survey of the development and comparative morphology of the pineal organ. Progr. Brain Res.10, 3–29 (1965)Google Scholar
  19. Schmidt, W. J.: Dichroismus der Außenglieder der Stäbchenzellen der Froschnetzhaut verursacht durch den Sehpurpur. Naturwissenschaften22, 206 (1934)Google Scholar
  20. Schmidt, W. J.: Doppelbrechung, Dichroismus und Feinbau des Außengliedes der Sehzellen vom Frosch. Z. Zellforsch.22, 485–522 (1935)Google Scholar
  21. Schmidt, W. J.: Polarisationsoptische Analyse eines Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen. Kolloid-Z.85, 137–148 (1938)Google Scholar
  22. Taylor, D. H.: Polarized light: Possible significance of the plane of polarized light in orientation of salamanders (abstract). Herpetol. Rev.3, 66 (1971)Google Scholar
  23. Taylor, D. H., Adler, K.: Spatial orientation by salamanders using plane-polarized light. Science181, 285–287 (1973)Google Scholar
  24. Taylor, D. H., Ferguson, D. E.: Extraoptic celestial orientation in the southern cricket frogAcris gryllus. Science168, 390–392 (1970)Google Scholar
  25. Wald, G., Brown, P. K., Gibbons, I. R.: Visual Excitation: A chemo-anatomical study. In: Biological receptor mechanisms (J. W. L. Beament, ed.), p. 32–57. London: Cambridge Univ. Press 1962Google Scholar
  26. Waterman, T. H.: Systems analysis and the visual orientation of animals. Amer. Sci.54, 15–45 1966Google Scholar
  27. Waterman, T. H., Fernández, H. R., Goldsmith, T. H.: Dichroism of photosensitive pigment in rhabdoms of the crayfishOrconectes. J. gen. Physiol.54, 415–432 (1969)Google Scholar
  28. Waterman, T. H., Forward, R. B., Jr.: Field evidence for polarized light sensitivity in the fishZenarchopterus. Nature (Lond.)228, 85–87 (1970)Google Scholar
  29. Waterman, T. H., Forward, R. B., Jr.: Field demonstration of polarotais in the fishZenarchopterus. J. exp. Zool.180, 33–54 (1972)Google Scholar
  30. Waterman, T. H., Horch, K. W.: Mechanism of polarized light perception. Science154, 467–475 1966Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Kraig Adler
    • 1
    • 2
  • Douglas H. Taylor
    • 1
    • 2
  1. 1.Section of Neurobiology and BehaviorLangmuir Laboratory Cornell UniversityIthaca
  2. 2.Department of ZoologyMiami UniversityOxford

Personalised recommendations