The rate of lactic acid removal in relation to different baselines of recovery exercise

  • C. T. M. Davies
  • A. V. Knibbs
  • J. Musgrove
Article

Summary

During strenuous exercise lactic acid (LA) appears in the blood as a result of anaerobic metabolism. The rate at which this LA was removed from the blood after exercise was seen to increase to a maximum with a certain level of post exercise activity. This maximum rate of removal of LA appears to be at approximately 40% of the individual's maximum oxygen uptake when the exercise is performed on a bicycle ergometer.

Key-Words

Exercise Lactic Acid Removal Rate Recovery Exercise Lactic Acid Metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assmussen, E., Nielsen, M.: Studies on the regulation of respiration in heavy work. Acta physiol. scand.12, 171–187 (1946).Google Scholar
  2. 2.
    —, Döbeln, W. V., Nielsen, M.: Blood laotate and oxygen debt after exhaustive work at different oxygen tensions. Acta physiol. scand.15, 57–62 (1948).Google Scholar
  3. 3.
    —, Pyruvate and laotate content of the blood during and after muscular work. Acta physiol. scand.20, 125–132 (1950).Google Scholar
  4. 4.
    Åstrand, I.: Lactate content in sweat. Acta physiol. scand.58, 359–367 (1963).Google Scholar
  5. 5.
    Bang, O.: The lactate content of blood during and after exercise in man. Skand. Arch. Physiol.74, Suppl. 10, 51–82 (1936).Google Scholar
  6. 6.
    Barcroft, H., Dornhorst, A. C.: Blood flow through the human calf during rhythmic exercise. J. Physiol. (Lond.)109, 402–411 (1949).Google Scholar
  7. 7.
    Barr, D. P., Himwich, H. E., Green, R. P.: Promptness of lactic acid appearance and rapid decrease when passes through inactive region = free diffusion of lactic acid ions. J. biol. Chem.50, 525 (1923).Google Scholar
  8. 8.
    Bergmeyer, H. U.: Methods of enzymatic analysis, p. 266–270. Verlag Chemie, Weinheim an der Bergstraße 1962.Google Scholar
  9. 9.
    Carlsten, A., Hallgren, B., Jagenburg, R., Vanborg, A. S., Werko, L.: Myocardial metabolism of glucose, lactic acid, amino acids, and fatty acids in healthy human individuals at rest and at different work loads. Scand. J. clin. Lab. Invest.13, 418–428 (1961).Google Scholar
  10. 10.
    Cori, C. F.: Lactic acid diffusion from muscle. Phosphorelation of glycogen and glucose. Biol. Symposia5, 131–140 (1941).Google Scholar
  11. 11.
    Cowan, C. R., Solandt, O. M.: The duration of the recovery period following strenuous muscular exercise measured to a base line of mild exercise. J. Physiol. (Lond.)89, 462–466 (1937).Google Scholar
  12. 12.
    Davies, C. T. M., Shirling, D. S.: The rapid sampling storage and analysis of expired air. Ergonomics10, 349–359 (1967).Google Scholar
  13. 13.
    Flock, E. V., Ingle, D. J., Bollman, J.: Formation of lactic acid, an initial process in working muscle. J. biol. Chem.129, 99–110 (1939).Google Scholar
  14. 14.
    Gisolfi, C., Robinson, S., Turrell, E. S.: Effects of aerobic work performed during recovery from exhausting work. J. appl. Physiol.21, 1767–1772 (1966).Google Scholar
  15. 15.
    Hammarsten, G.: Kliniska Laborationsmetoder. Stockholm: Astra 1947.Google Scholar
  16. 16.
    Harris, P., Bateman, M., Gloster, J.: The regional metabolism of lactate and pyruvate during exercise in patients and rheumatic heart disease. Clin. Sci.23, 545–560 (1962).Google Scholar
  17. 17.
    Himwich, H. E., Koskoff, Y. D., Nahum, L. H.: Studies in carbohydrate metbolism. I. A glucose-lactic acid cycle involving muscle and liver. J. biol. Chem.85, 571–584 (1930).Google Scholar
  18. 18.
    Huckabee, W. E.: Relationships of pyruvate and lactate during anaerobic metabolism. II. Exercise and formation of oxygen debt. J. clin. Invest.37, 255–263 (1958).Google Scholar
  19. 19.
    Jervell, O.: Investigation of the concentration of lactic acid in blood and urine under physiological and pathological conditions. Acta med. scand. Suppl.24, 5 (1928).Google Scholar
  20. 20.
    Johnson, R. E., Edward, H. T.: Lactate and pyruvate in blood and urine after exercise. J. biol. Chem.118, 427–432 (1937).Google Scholar
  21. 21.
    Krebs, H.: Gluconeogenesis. Proc. roy. Soc. B.159, 545–563 (1964).Google Scholar
  22. 22.
    Levy, M. N.: Uptake of lactate and pyruvate by intact kidney of dog. Amer. J. Physiol.202, 302–308 (1962).Google Scholar
  23. 23.
    —: Lactate uptake by the intact kidney. Ann. N.Y. Acad. Sci.119, Art. 3, 1029–1038 (1965).Google Scholar
  24. 24.
    Lundin, G., Ström, G.: Concentration of blood lactic acid in man during muscular work in relation to partial pressure of oxygen of inspired air. Acta physiol. scand.13, 253–266 (1947).Google Scholar
  25. 25.
    Margaria, R., Edward, H. T., Dill, D. B.: The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Amer. J. Physiol.106, 689–715 (1933).Google Scholar
  26. 26.
    Newman, E. V., Dill, D. B., Edwards, H. T., Webster, F. A.: Rate of lactic acid removal in exercise. Amer. J. Physiol.118, 457–462 (1937).Google Scholar
  27. 27.
    Newton, J. L., Robinson, S.: The distribution of blood lactate and pyruvate during work and recovery. Fed. Proc.24, 590 (1964).Google Scholar
  28. 28.
    Olson, R. E., Piatnek, D. A.: Conservation of energy in cardiac muscle. Ann. N.Y. Acad. Sci.72, 466–478 (1959).Google Scholar
  29. 29.
    Rowell, L. B., Kraining, K. K., II, Evans, T. O., Kennedy, J. W., Blackman, J. R., Kusumi, F.: Splanchnic removal of lactate and pyruvate during prolonged exercise in man. J. appl. Physiol.21, 1773–1783 (1966).Google Scholar
  30. 30.
    —, Blackman, J. R., Bruce, R. A.: Indocyanine green clearance and estimated hepatic blood flow during mild to maximum exercise in upright man. J. clin. Invest.43, 1677–1690 (1964).Google Scholar
  31. 31.
    Sacks, J., Sacks, W. C., Shaw, J. R.: Carbohydrate and phosphorous changes in prolonged muscular contractions. Amer. J. Physiol.118, 232–240 (1937).Google Scholar
  32. 32.
    Scholz, R., Schmitz, H., Bücher, T., Lampen, J. O.: Über die Wirkung von Nystatin auf Bäckerhefe. Biochem. Z.331, 71 (1959).Google Scholar
  33. 33.
    Shephard, R. J., Allen, C., Benade, A. J. S., Davies, C. T. M., Di Prampero, P. E., Hedman, R., Merriman, J. E., Myhre, K., Simmons, R.: The maximum oxygen intake. Bull. Wld Hlth Org.38, 757–764 (1968).Google Scholar
  34. 34.
    Tranquada, R. E.: The relationship of intracellular and extracellular lactate and pyruvate concentrations. Clin. Res.14, 179 (1966).Google Scholar
  35. 35.
    Wade, O. L., Combes, B., Childs, A. W., Wheeler, H. O., Cournand, Bradley, S. E.: Effect of exercise on the splanchnic blood volume in normal man. Clin. Sci.15, 457–463 (1956).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • C. T. M. Davies
    • 1
    • 2
  • A. V. Knibbs
    • 1
    • 2
  • J. Musgrove
    • 1
    • 2
  1. 1.M.R.C. Environmental Physiology Research UnitLondon
  2. 2.School of Hygiene and Tropical MedicineLondon, W.C. 1

Personalised recommendations