Journal of Atmospheric Chemistry

, Volume 19, Issue 4, pp 331–369

A three-dimensional model of the global ammonia cycle

  • Frank J. Dentener
  • Paul J. Crutzen
Article

Abstract

Using a three-dimensional (3-D) transport model of the troposphere, we calculated the global distributions of ammonia (NH3) and ammonium (NH4+), taking into account removal of NH3 on acidic aerosols, in liquid water clouds and by reaction with OH. Our estimated global 10°×10° NH3 emission inventory of 45 Tg N-NH3 yr provides a reasonable agreement between calculated wet NH4+ deposition and measurements and of measured and modeled NH4+ in aerosols, although in Africa and Asia especially discrepancies exist.

NH3 emissions from natural continental ecosystems were calculated applying a canopy compensation point and oceanic NH3 emissions were related to those of DMS (dimethylsulfide). In many regions of the earth, the pH found in rain and cloud water can be attributed to acidity derived from NO, SO2 and DMS emissions and alkalinity from NH3. In the remote lower troposphere, sulfate aerosols are calculated to be almost neutralized to ammonium sulfate (NH4)2SO4, whereas in the middle and upper troposphere, according to our calculations, the aerosol should be more acidic, as a result of the oxidation of DMS and SO2 throughout the troposphere and removal of NH3 on acidic aerosols at lower heights. Although the removal of NH3 by reaction with the OH radical is relatively slow, the intermediate NH2 radical can provide a substantial annual N2O source of 0.9−0.4+0.9 Tg, thus contributing byca. 5% to estimated global N2O production. The oxidation by OH of NH3 from anthropogenic sources accounts for 10% of the estimated total anthropogenic sources of N2O. This source was not accounted for in previous studies, and is mainly located in the tropics, which have high NH3 and OH concentrations. Biomass burning plumes, containing high NOx and NH3 concentrations provide favourable conditions for gas phase N2O production. This source is probably underestimated in this model study, due to the coarse resolution of the 3-D model, and the rather low biomass burning NH3 and NOx emissions adopted. The estimate depends heavily on poorly known concentrations of NH3 (and NOx) in the tropics, and uncertainties in the rate constants of the reactions NH2 + NO2 → N2O + H2O (R4), and NH2 + O3 → NH2O + O2 (R7).

Key words

Global model emission inventory ammonia ammonium nitrous oxide acidity canopy compensation point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M. O., Berresheim, H., Andreae, T. W., Kritz, M. A., Bates, T. S., and Merrill, J. T., 1988, Vertical distribution of dimethylsulfide, sulfurdioxide, aerosol ions, and radon over the Northeast Pacific Ocean,J. Atmos. Chem. 6, 149–173.Google Scholar
  2. Andreae, M. O., Talbot, R. W., Berresheim, H., and Beecher, K. M., 1990, Precipitation chemistry in central Amazonia,J. Geophys. Res. 95, 16987–16999.Google Scholar
  3. Andreae, M. O., 1991, Biomass burning: Its history, use and distribution and its impact on environmental quality and global climate, in J. Levine (ed.)Global Biomass Burning, MIT Press, Boston.Google Scholar
  4. Asman, W. A. H. and Van Jaarsveld, H. A., 1992, A variable-resolution transport model applied for NHx in Europe,Atmos. Environ. 26A, 445–464.Google Scholar
  5. Asman, W. A. H., 1992, Ammonia emission in Europe: Updated emission and emission variations, Report 228471008, RIVM, Bilthoven, The Netherlands.Google Scholar
  6. Ayers, G. P. and Gras, J. L., 1980, Ammonia gas concentrations over the Southern Ocean,Nature 284, 539–540.Google Scholar
  7. Ayers, G. P. and Gras, J. L., 1980, Ammonia gas concentrations over the Southern Ocean,Nature 284, 539–540.Google Scholar
  8. Ayers, G. P. and Manton, M. J., 1991, Rainwater composition of two BAPMoN regional stations in SE Australia,Tellus 43B, 379–389.Google Scholar
  9. Ayers, G. P. and Ivey, J. P., 1988, Precipitation composition at Cape Grim,Tellus 40B, 297–307.Google Scholar
  10. Ayers, G. P. and Gillett, R. W., 1988, First observations of cloudwater acidity in tropical Australia,Clean Air 22, 53–57.Google Scholar
  11. Bates, T. S., Cline, J. D., Gammon, R. H., and Kelly-Hanssen, S. R., 1987, Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere,J. Geophys. Res. 92, 2930–2938.Google Scholar
  12. Berges, M. G. M., Hoffmann, R. M., Scharffe, D., and Crutzen, P. J., 1993, Measurement of nitrous oxide emissions from motor vehicles in tunnels,J. Geophys. Res. 98, 18527–18531.Google Scholar
  13. Berresheim, H., Andreae, M. O., Ayers, G. P., Gillett, R. W., Merrill, J. T., Davis, V. J., and Chameides, W. L., 1990, Airborne measurements of dimethylsulfide, sulfur dioxide and aerosol ions over the Southern Ocean south of Australia,J. Atmos. Chem. 10, 341–370.Google Scholar
  14. Berresheim, H., Andreae, M. O., Iverson, R. L., and Li, S. M., 1991, Seasonal variations of dimethylsulfide emissions and atmospheric sulfur and nitrogen species over the western north Atlantic Ocean,Tellus 43B, 353–372.Google Scholar
  15. Böttger, A., Ehhalt, D. H., and Gravenhorst, G., 1978, Atmospheric cycles of nitrogen oxides and ammonia (in German), Report 1558, KFA Jülich, Germany.Google Scholar
  16. Bouwman, A. F., Van de Hoek, K. W., and Olivier, J. G. J., 1994, Uncertainty in the global source distribution of nitrous oxide,J. Geophys. Res. in press.Google Scholar
  17. Bridgeman, H. A., 1989, Acid rain studies in Australia and New Zealand,Arch. Environ. Contam. Toxicol. 18, 137–146.Google Scholar
  18. Buijsman, E., Jonker, P. J., Asman, W. A. H., and Ridder, T. B., 1991, Chemical composition of precipitation collected on a weathership on the North Atlantic,Atmos. Environ. 25A, 873–883.Google Scholar
  19. Buijsman, E. and Erisman, J. W., 1988, Wet deposition of ammonium in Europe,J. Atmos. Chem. 6, 265–280.Google Scholar
  20. Busenberg, E. and Langway, C. C. Jr., 1979, Levels of ammonium, sulfate, calcium, and sodium in snow and ice from Southern Greenland,J. Geophys. Res. 84, 1705–1709.Google Scholar
  21. Cheskis, S. G., Iogansen, A. A., Sarkisov, O. M., and Titov, A. A., 1985, Laser photolysis of ozone in the presence of ammonia. Formation and decay of vibrationally excited NH2 radicals,Chem. Phys. Let. 120, 45–49.Google Scholar
  22. Church, T. M., Tramontano, J. M., Whelpdale, D. M., Andreae, M. O., Galloway, J. N., Keene, W. C., Knap, A. H., and Tokos, J. Jr., 1991, Atmospheric and precipitation chemistry over the North Atlantic ocean: Shipboard results, April–May 1984,J. Geophys. Res. 96, 18705–18725.Google Scholar
  23. Clairac, B., Delmas, R., Cros, B., Cachier, H., Buat-Menard, P., and Servant, J., 1988, Formation and chemical composition of atmospheric aerosols in an equatorial forest area,J. Atmos. Chem. 6, 301–322.Google Scholar
  24. Clarke, A. D., 1992, Physico-chemistry of nuclei in the remote free-troposphere, in N. Fukuta and P. E. Wagner (eds.),Nucleation and Atmospheric Aerosols, A. Deepak Publisher, Hampton, 469–472.Google Scholar
  25. Clarke, A. D. and Porter, J. N., 1993, Pacific marine aerosol part II: Equatorial gradients in chlorophyl, ammonium and excess sulfate during Saga-3,J. Geophys. Res. 98, 16997–17010.Google Scholar
  26. Covert, D. S., 1988, North Pacific marine background aerosol: Average ammonium to sulfate rate equals 1,J. Geophys. Res. 93, 8455–8458.Google Scholar
  27. Crutzen, P. J. and Andreae, M. O., 1990, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles,Science 250, 1169–1678.Google Scholar
  28. Crutzen, P. J., Aselmann, I., and Seiler, W., 1986, Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans,Tellus 38, 271–284.Google Scholar
  29. Dawson, G. A., 1977, Atmospheric ammonia from undisturbed land,J. Geophys. Res. 82, 3125–3133.Google Scholar
  30. Dayan, U. and Nelson, D. W., 1988, Origin and composition of Samoan precipitation,Tellus 40B, 148–153.Google Scholar
  31. Delmas, R., Briat, M., and Legrand, M., 1982, Chemistry of South Polar snow,J. Geophys. Res. 87, 4314–4318.Google Scholar
  32. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1992, Chemical Kinetics and Photochemical data for use in stratospheric modeling, JPL-NASA: Evaluation number 10.Google Scholar
  33. Denmead, O. T., Freney, J. R., and Simpson, J. R., 1976, A closed ammonia cycle within a plant canopy,Soil Biology and Biochemistry 8, 161–164.Google Scholar
  34. Dentener, F. J., and Crutzen, P. J., 1993, Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3 and OH,J. Geophys. Res. 98, 7149–7163.Google Scholar
  35. Dentener, F. J., 1993, Heterogeneous chemistry in the troposphere, PhD thesis, University of Utrecht, The Netherlands.Google Scholar
  36. Duce, R. A.,et al., 1991, The atmospheric input of trace species to the world oceans,Global Biogeochem. Cycl. 5, 193–259.Google Scholar
  37. Erisman, J., Vermetten, A. W. M., Asman, W. A. H., Waijers-IJpelaan, A., and Slanina, J., 1988, Vertical distribution of gases and aerosols: The behaviour of ammonia and related components in the lower atmosphere,Atmos. Environ. 22, 1153–1160.Google Scholar
  38. FAO, 1991, Yearbook 1990, FAO Statistic Series 99, Rome, Italy.Google Scholar
  39. Farquhar, G. D., Wetselaar, R., and Firth, P. M., 1979, Ammonia volatalisation from scenescing leaves of maize,Science 203, 1257–1258.Google Scholar
  40. Feichter, J. and Crutzen, P. J., 1990, Parameterisation of deep cumulus convection in a global trace transport model and its evaluation with222Radon,Tellus 42B, 100–117.Google Scholar
  41. Ferm, M., 1992, Data from passive sampling of SO2, NO2 and NH3, Summary Document, in G. Ayerset al. (eds.),2nd IGAC CAAP Workshop.Google Scholar
  42. Forti, M. C. and Moreira-Nordemann, L. M., 1991, Rainwater and throughfall chemistry in a Terra Firma rain forest: Central Amazonia,J. Geophys. Res. 96, 7415–7421.Google Scholar
  43. Galbally, I. and Gillet, R., 1988, Processes regulating nitrogen compounds in the tropical atmosphere, in H. Rodhe and H. Herrera (eds.),Acidification in Tropical Countries, SCOPE Report, Wiley, New York.Google Scholar
  44. Galloway, J. N., Dianwu, Z., Jiling, X., and Likens, G. E., 1987, Acid Rain: China, United States, and a Remote Area,Science 236, 1559–1562.Google Scholar
  45. Galloway, J. N., Keene, W. C., Artz, R. S., Miller, J. M., Church, T. M., and Knap, A. H., 1989, Processes controlling the concentrations of SO42−, NH4+, NO3, H+, HCOOt and CH3COOt in precipitation on Bermuda,Tellus 41B, 427–443.Google Scholar
  46. Gras, J. L., 1991, Southern Hemisphere tropospheric aerosol microphysics,J. Geophys. Res. 96, 5345–5356.Google Scholar
  47. Gras, J. L., 1983, Ammonia and ammonium concentrations in the antarctic atmosphere,Atmos. Environ. 17, 815–818.Google Scholar
  48. Gregory, G. L.et al., 1986, Air chemistry over the tropical forest of Guyana,J. Geophys. Res. 91, 8603–8612.Google Scholar
  49. Hanssen, J. E., Pedersen, U., Schlaug, J., Dovland, H., Pacyna, J. M., Semb, A., and Skjelmoen, J. E., 1990, Summary Report from the chemical Co-ordinating Centre for the fourth Phase of EMEP, EMEP/CCC-report 2/90.Google Scholar
  50. Hao, W. M., Liu, M. H., and Crutzen, P. J., 1991, Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics based on the FAO statistics for the period 1975–1980, in J. Goldhammer (ed.),Fire in the Tropical Biota, Springer, Berlin, pp. 440–462.Google Scholar
  51. Healy, T. V., McKay, H. A. C., Pilbeam, A., and Scargill, D., 1970, Ammonia and ammonium sulfate in the troposphere over the United Kingdom,J. Geophys. Res. 75, 845–857.Google Scholar
  52. Harrison, R. M. and Kitto, A. N., 1992, Estimation of the rate constant for the reaction of acid sulfate aerosol with NH3 gas from atmospheric measurements,J. Atmos. Chem. 15, 133–143.Google Scholar
  53. Henderson-Sellers, A., Wilson, M. F., Thomas, G., and Dickerson, R. E., 1986, Current global land-surface data sets for use in climate-related studies,NCAR TN-272 + STR, Tecnical Note.Google Scholar
  54. Huebert, B. J., Wang, M. X., and Lu, W. X., 1988, Atmospheric nitrate, sulfate, ammonium and calcium concentrations in China,Tellus 40B, 260–269.Google Scholar
  55. Huntzicker, J. J., Cary, R. A., and Ling, C. S., 1980, Neutralization of sulfuric acid by ammonia,Environ. Sci. Technol. 14, 819–824.Google Scholar
  56. Iversen, T., Halvorsen, N. E., Mylona, S., and Sandes, H., 1991, Calculated budgets for airborne acidifying components in Europe, 1985, 1987, 1988, 1989 and 1990, EMEP/MSW-Report 1–91, NILU, Lilleström, Norway.Google Scholar
  57. Janssen, A. J. and Asman, W. A. H., 1988, Effective removal parameters in long-range air pollution models,Atmos. Environ. 22, 359–367.Google Scholar
  58. Jaeger, L., 1976,Monatskarten des Niederschlags für die ganze Erde, Berichte des Deutschen Wetterdienstes, Vol. 139.Google Scholar
  59. Jones, M. J., 1971, Ammonium and nitrate nitrogen in the rainwater at Samaru, Nigeria,Tellus 23, 459–461.Google Scholar
  60. Junge, C. E. and Gustafson, P. E., 1957, On the distribution of seasalt over the United States and its removal by precipitation,Tellus 9, 164–173.Google Scholar
  61. Kanakidou, M., Dentener, F. J., and Crutzen, P., 1993, A global three-dimensional study of the degradation of HCFCs and HFC-134a in troposphere, Proc.STEP-HALOSIDE/AFEAS Workshop, Dublin.Google Scholar
  62. Khemani, L. T., Momin, G. A., Naik, M. S., Vijayakumar, R., and Ramana Murty, V., 1982, Chemical composition and size distribution of atmospheric aerosols over the Deccan Plateau, India,Tellus 34, 151–158.Google Scholar
  63. Knapp, W. W., Bowersox, V. C., Chevone, B. I., Krupa, S. V., Lynch, J. A., and McFee, W. W., 1988, Precipitation chemistry in the United States, 1: Summary of ion concentration variability 1979–1984, inWater Resources Institute Continuum, 3, Cooperative agreement 58-3159-5-41, Center for Environmental Research, Cornell University, Ithaca, NY.Google Scholar
  64. Koutrakis, P. and Aurian-Blajeni, B., 1993, Measurement of partial vapour pressure of ammonia over acid ammonium sulfate solutions by an integral method,J. Geophys. Res. 98, 2941–2948.Google Scholar
  65. Lacaux, J., Delmas, R. A., Cros, B., Lefeivre, B., and Andreae, M. O., 1991, Influence of biomass burning emissions on precipitation chemistry in the equatorial forests of Africa, in J. Levin (ed.),Global Biomass Burning, MIT Press, Boston.Google Scholar
  66. Langford, A. O., Fehsenfeld, F. C., Zachariassen, J., and Schimel, D. S., 1992, Gaseous ammonia fluxes and background concentrations in terrestrial ecosystems of the United States,Global Biogeochem. Cycl. 6, 459–483.Google Scholar
  67. Langford, A. O. and Fehsenfeld, F. C., 1992, Natural vegetation as a source or sink for atmospheric ammonia: A case study,Science 255, 581–583.Google Scholar
  68. Langner, J. and Rodhe, H., 1991, A global three-dimensional model of the tropospheric sulfur cycle,J. Atmos. Chem. 13, 225–265.Google Scholar
  69. Laursen, K. K., Hobbs, P. V., Radke, L. F., Rasmussen, R. A., 1992, Some trace gas emissions from North American biomass fires with assessment of regional and global fluxes from biomass burning,J. Geophys. Res. 97, 20687–20701.Google Scholar
  70. Lelieveld, J., Crutzen, P. J., and Rodhe, H., 1989, Zonal average cloud characteristics for global atmospheric chemistry modeling. GLOMAC-Report UDC 551.510.4, CM-74, International Meteorological Institute, Stockholm, Sweden.Google Scholar
  71. Lemon, E. and Van Houte, R., 1980, Ammonia exchange at the land surface,Agron. J. 72, 876–883.Google Scholar
  72. Lenhard, U. and Gravenhorts, G., 1980, Evaluation of ammonia fluxes into the free atmosphere over Western Germany,Tellus 32, 48–55.Google Scholar
  73. Lerner, J. and Matthews, E., 1988, Methane emissions from animals: A global high resolution database,Global Biogeochem. Cycl. 2, 139–156.Google Scholar
  74. Liss, P. S. and Galloway, J. N., 1993, Air-sea exchange of sulfur and nitrogen and their interaction in the marine atmosphere, in R. Wollast, F. T. Mackenzie, and L. Chou (eds.),Interactions of C, N, P and S Biogeochemical Cycles and Global Change, Springer-Verlag, Berlin.Google Scholar
  75. Loehr, R. C. and Hart, S. A., 1970, Changing practices in agriculture and their effects on the environment,Crit. Rev. Environ. Control. 1, 87–92.Google Scholar
  76. McDowell, W. H., Sanchez, C. G., Asbury, C. E., and Ramos Perez, C. R., 1990, Influence of sea salt aerosols and long range transport on precipitation chemistry at El Verde, Puerto Rico,Atmos. Environ. 24A, 2813–2821.Google Scholar
  77. NAPAP (National Acid Precipitations Assessment Program), 1991, Acid deposition, in P. M. Irving (ed.),State of Science and Technology, Vol. 1, Emissions, Atmospheric Processes and Deposition, NAPAP, Washington DC.Google Scholar
  78. Newell, R. E., Kidson, J. W., Vincent, D. G., and Boer, G. J., 1974,The General Circulation of the Tropical Atmosphere and Interactions with Extra Tropical Latitudes, Vol. 2, MIT Press, Cambridge, Mass.Google Scholar
  79. Ohta, S., Murao, N., and Makarov, V. N., 1992, Geochemical study of atmospheric aerosols in Yakutsk, presented at Permafrost Environment, Hokaido University, Sapporo, Japan.Google Scholar
  80. Ono, A., 1978, Sulfuric acid particles in subsiding air over Japan,Atmos. Environ. 12, 753–757.Google Scholar
  81. Oort, A. H., 1983, Global atmospheric circulation statistics, 1958–1932, NOAA professional paper, No. 14 US Government Printing Office, Washington DC.Google Scholar
  82. Patrick, R. and Golden, D. M., 1984, Kinetics of reactions of NH2 radicals with O3 and O2,J. Phys. Chem. 88, 491–495.Google Scholar
  83. Parungo, F., Nagamoto, C., Nolt, I., Dias, M., and Nickerson, E., 1982, Chemical analysis of cloud water collected over Hawaii,J. Geophys. Res. 87, 8805–8810.Google Scholar
  84. Parungo, F., Nagamoto, C. T., Rosinsky, J., and Haagenson, P. L., 1986, A study of marine aerosols over the Pacific Ocean,J. Atmos. Chem. 4, 199–226.Google Scholar
  85. Ponche, J. L., George, C., and Mirabel, P., 1993, Mass transfer at the air/water interface: Mass accommodation coefficients of SO2, HNO3, NO2, and NH3,J. Atmos. Chem. 16, 1–21.Google Scholar
  86. Post, D., Bridgman, H. A., and Ayers, G. P., 1991, Fog and rainwater composition in rural SE Australia,J. Atmos. Chem. 13, 83–95.Google Scholar
  87. Quinn, P. K., Charlson, R. J., and Bates, T. S., 1988, Simultaneous observations of ammonia in the atmosphere and ocean,Nature 335, 336–338.Google Scholar
  88. Quinn, P. K., Bates, T. S., Johnson, J. E., Covert, D. S., and Charlson, R. J., 1990, Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean,J. Geophys. Res. 95, 16405–16416.Google Scholar
  89. Rodhe, H., 1983, Precipitation scavenging and tropospheric mixing, in H. R. Pruppacher, R. G. Semonin and W. G. N. Slinn (eds.),Precipitation Scavenging, Dry Deposition and Resuspension, Elsevier, New York.Google Scholar
  90. Schlesinger, W. H., and Hartley, A. E. (eds.), 1992, A global budget for atmospheric NH3,Biogeochemistry 15, 191–211.Google Scholar
  91. Servant, J., Delmas, R., Rancer, J., and Rodriguez, M., 1984, Aspects of the cycle of inorganic nitrogen compounds in the tropical rainforest of the Ivory Coast,J. Atmos. Chem. 1, 391–401.Google Scholar
  92. Smith, R. M. and Martell, A. E., 1976,Critical Stability Constants, Vol. 4,Inorganic Complexes, Plenum, New York.Google Scholar
  93. Stallard, R. F. and Edmond, J. M., 1981, Geochemistry of the Amazon, 1, Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge,J. Geophys. Res. 86, 9844–9858.Google Scholar
  94. Stelson, A. W. and Seinfeld, J. H., 1982, Relative humidity and temperature dependence of the ammonium nitrate dissociation constant,Atmos. Environ. 16, 983–992.Google Scholar
  95. Strapp, J. W., Leaitch, W. R., Anlauf, K. G., Bottenheim, J. W., Joe, P., Schemenauer, R. S., Wiebe, H. A., Isaac, G. A., Kelly, T. J., and Daum, P. H., 1988, Winter cloud water acidity and air composition in Central Ontario,J. Geophys. Res. 93, 3760–3772.Google Scholar
  96. Söderlund, R. and Svensson, B. H., 1976, The global nitrogen cycle in: Nitrogen, Phosphorus and Sulfur global cycles, SCOPE-Report 7, 23–73, Ecological Bulletins, Stockholm, Sweden.Google Scholar
  97. Sutton, M. A., Asman, W. A. H., and Schjoerring, J. K., 1992, Dry deposition of reduced nitrogen, Background document UN-ECE workshop on deposition of atmospheric pollutants, Göteborg.Google Scholar
  98. Sutton, M. A., Moncrieff, J. B., and Fowler, D., 1992, Deposition of atmospheric ammonia to moorlands,Environ. Poll. 75, 15–24.Google Scholar
  99. Talbot, R. W., Harris, R. C., Browell, E. V., Gregory, G. L., Sebacher, D. I., and Beck, S. M., 1986, Distribution and geochemistry of aerosols in the tropical north Atlantic troposphere: Relationship to Saharan Dust,J. Geophys. Res. 91, 5173–5182.Google Scholar
  100. Talbot, R. W., Andreae, M. O., Berresheim, H., Artaxo, P., Garstang, M., Harriss, R. C., Beecher, K. M., and Li, S. M., 1990, Aerosol chemistry during the wet season in Central Amazonia: The influence of long range transport,J. Geophys. Res. 95, 16955–16970.Google Scholar
  101. Talbot, R. W., Vijgen, S. A., and Harris, R. C., 1992, Soluble species in the arctic summer troposphere: Acidic gases, aerosols, and precipitation,J. Geophys. Res. 97, 16531–16545.Google Scholar
  102. Tang, I. N., 1980, On the equilibrium partial pressures of nitric acid and ammonia in the atmosphere,Atmos. Environ. 14, 819–828.Google Scholar
  103. Tanner, R. L., 1982, An ambient experimental study of phase equilibrium in the atmospheric system: Aerosol H+, NH4+, SO42−, NO3, NH3, HNO3,Atmos. Environ. 16, 2935–2942.Google Scholar
  104. United Nations, 1983,1981. Yearbook of World Energy Statistics, New York.Google Scholar
  105. Warneck, P., 1988,Chemistry of the Natural Atmosphere, International Geophysical Series, Vol. 41, Academic Press, San Diego.Google Scholar
  106. Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., and Jenne, R., 1986, Global distribution of total cloud cover and cloud type amounts over land, Technical Note TN-273 + STR NCAR, Boulder, Co.Google Scholar
  107. Wesely, M. L., 1989, Parameterisation of surface resistances of gaseous dry deposition in regional-scale numerical models,Atmos. Environ. 23, 1293–1304.Google Scholar
  108. Whelpdale, D. M., Keene, W. C., Hansen, A. D. A., and Boatman, J., 1987, Aircraft measurements of sulfur, nitrogen, and carbon species during WATOX-86,Glob. Biogeochem. Cycl. 1, 357–368.Google Scholar
  109. Whitby, K. T., 1978, The physical characteristics of sulfur aerosols,Atmos. Environ. 12, 135–159.Google Scholar
  110. WMO (World Meteorological Organization), 1993, Review of the global precipitation chemistry of BAPMoN,Global Atmosphere Watch 83.Google Scholar
  111. Yoshizumi, K. and Asakuno, K., 1986, Characterization of atmospheric aerosols in Chichi of the Ogasawara (Bonin) Islands,Atmos. Environ. 20, 151–155.Google Scholar
  112. Zhao, D. and Wang, A., 1994, Estimation of anthropogenic ammonia emissions in Asia,Atmos. Environ. 28, 689–694.Google Scholar
  113. Ziereis, H. and Arnold, F., 1986, Gaseous ammonia and ammonium ions in the free troposphere,Nature 321, 503–505.Google Scholar
  114. Zimmermann, P. H., 1988, Moguntia: A handy global tracer model, in H. van Dop (ed.),Air Pollution Modeling and its Applications VI, Plenum, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Frank J. Dentener
    • 1
  • Paul J. Crutzen
    • 1
  1. 1.Max-Planck-Institut für ChemieMainzGermany
  2. 2.Wageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations