Journal of Comparative Physiology B

, Volume 159, Issue 5, pp 551–560 | Cite as

Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes

  • L. Fahrenholz
  • I. Lamprecht
  • B. Schricker


The temperature at the centre, the periphery and the entrance of a honey bee colony (Apis mellifera carnica) was continuously determined during the summer season and the broodless time in winter. During the summer season the temperature in the brood nest averages 35.5°C with brief excursions up to 37.0°C and down to 33.8°C. Increasing environmental temperatures resulted in linear increases in the temperature of the hive entrance, its periphery and its centre. The temperature in the centre of an overwintering cluster is maintained at an average value of 21.3°C (min 12.0°C, max 33.5°C). With rising ambient temperatures the central temperature of a winter cluster drops whereas the peripheral temperature increases slightly. With decreasing external temperatures the peripheral temperature is lowered by a small amount while the cluster's centre temperature is raised. Linear relationships are observed between the central and the ambient temperature and between the central temperature and the temperature difference of the peripheral and the ambient temperatures. The slopes point to two minimum threshold values for the central (15°C) and the peripheral temperature (5°C) which should not be transgressed in an overwintering cluster. Microcalorimetric determinations of the heat production were performed on the three castes of the honey bee: workers, drones and queens of different ages. Among these groups single adult workers showed the highest heat production rates (209 mW·g−1) with only neglectible fluctuations in the heat production rate. Juvenile workers exhibited a mean heat production rate of 142 mW·g−1. The rate of heat production of adult workers is strongly dependent upon the number of bees together in a group. With more than 10 individuals weight-specific heat dissipation remains constant with increasing group sizes at a level approximately 1/17 that of an isolated bee. Differences are seen between the rates of virgin (117 mW·g−1) and laying (102 mW·g−1) queens. Laying queens showed less thermal fluctuations than virgin queens. High fluctuations in heat production rates are observed for drones. In both groups (fertile, juvenile) phases of high and extremely low activity succeed one another. The heat production of juvenile drones was 68 mW·g−1, that of fertile drones 184 mW·g−1 due to stronger locomotory activities.

Key words

Bees Calorimetry Heat production Temperature Thermoregulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen MD (1959) Respiration rates of worker honeybees of different ages and at different temperatures. J Exp Biol 36:92–101Google Scholar
  2. Bachem I, Lamprecht I, Shaarschmidt B (1980) Energetical investigations on the ecologic system: Ant hill. In: Hemminger W, Wiedemann HG (eds) Thermal analysis. Birkhäuser Basel: 571–575Google Scholar
  3. Bachem I, Lamprecht I (1983) The hill of the red wood antsFormica polyctena as a model of an ecological system. Zurnal Obscej Biologii 44:114–123Google Scholar
  4. Cahill K, Lustick S (1976) Oxygen consumption and thermoregulation inApis mellifera. Comp Biochem Physiol 55A:355Google Scholar
  5. Calvet E, Prat H (1956) Microcalorimetrie—applications physico-chimiques et biologiques. Masson, ParisGoogle Scholar
  6. Dontsova GV, Zotin AI (1982) Relationship between maximal metabolism, body weight and standard metabolism of animals. In: Lamprecht I, Zotin AI (eds) Thermodynamics and kinetics of biological processes. De Gruyter, Berlin, pp 369–385Google Scholar
  7. Free JB, Simpson J (1963) The respiratory metabolism of honey-bee colonies at low temperatures. Ent Exp Appl 6:234–238Google Scholar
  8. Free JB, Spencer-Booth Y (1958) Observations on the temperature regulation and food consumption of honeybees (Apis mellifera). J Exp Biol 35:930–937Google Scholar
  9. Free JB, Spencer-Booth Y (1959) Temperature regulation of honeybees. Bee World 40:173–177Google Scholar
  10. Free JB, Spencer-Booth Y (1960) Chill-coma and cold death temperatures ofApis mellifera. Ent Exp Appl 3:222–230Google Scholar
  11. Harrison JM (1987) Roles of individual honeybee workers and drones in colonial thermogenesis. J Exp Biol 129:53–61Google Scholar
  12. Heinrich B (1980) Mechanism of body-temperature regulation in honeybees,Apis mellifera. II. Regulation of thoraric temperature at high air temperatures. J Exp Biol 85:73–87Google Scholar
  13. Heinrich B (1981) Energetics of honeybee swarm thermoregulation. Science 212:565–566Google Scholar
  14. Hemminger W, Höhne G (1984) Calorimetry—fundamentals and practice. Verlag Chemie, WeinheimGoogle Scholar
  15. Heran H, Crailsheim K (1988) Energy requirements of bees (Apis mellifera carnica Pollm.) in free flight, with and without additional load. In: Energy transformations in cells and animals, 10th Conf Europ Comp Physiol and Biochem Innsbruck: 77Google Scholar
  16. Herman D, Lemasson M, Semaille R, Van Impe G (1982) Mesure de la consommation d'oxygene de l'abeille mellifere (Apis mellifica L.) par polarographie. Z Ang Ent 93:284–291Google Scholar
  17. Hocking B (1953) The intrinsic range and speed of flight of insects. Trans Roy Ent Soc Lond 104:218–234Google Scholar
  18. Kleiber M (1961) The fire of life. An introduction to animal energetics. Wiley, New YorkGoogle Scholar
  19. Kronenberg F (1979) Colonial thermoregulation in honey bees. Doctoral thesis, Stanford University, Stanford CAGoogle Scholar
  20. Kronenberg F, Heller HC (1982) Colonial thermoregulation in honey bees (Apis mellifera). J Comp Physiol 148: 65–76Google Scholar
  21. Lamprecht I (1983) Application of calorimetry to different biological fields and comparison with other methods. Boll Soc Natur Napoli 92:515–542Google Scholar
  22. Lindauer M (1951) Die Temperaturregulierung der Bienen bei Stocküberhitzung. Naturwissenschaften 38:308–309Google Scholar
  23. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vergl Physiol 36:391–432Google Scholar
  24. Lorenz RJ (1984) Grundbegriffe der Biometrie. Fischer, Stuttgart New YorkGoogle Scholar
  25. McNeil DR (1977) Interactive data analysis. A practical primer. Wiley, New York, p 186Google Scholar
  26. Moffett JO, Lawson FA (1975) Effect ofNosema-infection on O2 consumption by honey bees. J Econ Entom 68:627–629Google Scholar
  27. Nagy KA, Stallone JN (1976) Temperature maintenance and CO2 concentration in a swarm cluster of honey bees,Apis mellifera. Comp Biochem Physiol 55A:169–171Google Scholar
  28. Ritter W (1982) Experimenteller Beitrag zur Thermoregulation des Bienenvolkes (Apis mellifera L.). Apidologie 13:169–195Google Scholar
  29. Roth M (1964) Adaptation de la thermogenese a la temperature ambiante et effet d'economie thermique du groupe chez l'Abeille (Apis mellifica L.). CR Acad Sci Paris 258:5534–5537Google Scholar
  30. Roth M (1965) La production de chaleur chezApis mellifera L. Ann Abeille 8(1):5–77Google Scholar
  31. Scholze E, Pichler H, Heran H (1964) Zur Entfernungsschätzung der Bienen nach dem Kraftaufwand. Naturwissenschaften 51:69–70Google Scholar
  32. Simpson J (1961) Nest climate regulation in honey bee colonies. Science 133:1327–1333Google Scholar
  33. Southwick EE (1982) Metabolic energy of intact honey bee colonies. Comp Biochem Physiol 71A:277–281Google Scholar
  34. Southwick EE, Mugaas J (1971) A hypothetical homeotherm: The honeybee hive. Comp Biochem Physiol 40A:935–944Google Scholar
  35. Stussi TH (1972) L'heterothermie de l'abeille. Arch Sci Physiol 26:131–159Google Scholar
  36. Wohlgemuth R (1957) Die Temperaturregulation des Bienenvolkes unter regeltheoretischen Gesichtspunkten. Z Vergl Physiol 40:119–161Google Scholar
  37. Worswick PVW (1987) Comparative study of colony thermoregulation in the African honeybee,Apis mellifera adansonii Latreille and the Cape honeybee,Apis mellifera capensis Escholtz. Comp Biochem Physiol 86A:95–102Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • L. Fahrenholz
    • 1
    • 2
  • I. Lamprecht
    • 1
    • 2
  • B. Schricker
    • 1
    • 2
  1. 1.Institut für Zoologie der Freien Universität BerlinBerlin 33
  2. 2.Institut für Biophysik der Freien Universität BerlinBerlin 33

Personalised recommendations