Advertisement

Applied Microbiology and Biotechnology

, Volume 28, Issue 2, pp 182–187 | Cite as

Growth rate dependence of solventogenesis and solvents produced byClostridium beijerinckii

  • I. Ahmed
  • R. A. Ross
  • V. K. Mathur
  • W. R. Chesbro
Applied Microbiology

Summary

Acidogenesis and solventogenesis byClostridium beijerinckii NRRL B-593 has been studied in batch growth, and in sucrose-limited chemostat and recycling fermentor growth. Cells grown in batch culture without pH control primarily produced either butyric and acetic acids, or these acids plus butanol, ethanol and isopropanol in ratios depending on the medium's content of reducing agent, calcium and iron. Cells in chemostat-culture at a mass doubling time (td) of 5.8 h produced primarily butyric and acetic acids at pH 6.8 and these acids plus butanol, ethanol and isopropanol at pH 4.8. Cells grown in a recycling fermentor (in which the td continuously increases) at pH 6.8 entered solventogenesis at a td of 43 h, producing primarily propanol, ethanol and butanol, along with butyric acid, but with greatly decreased production of acetic acid. Although “clostridial form” morphology, succeeded by sporulation, usually accompanied solventogenesis, the association was not invariant so that solventogenesis and sporogenesis can occur separately in this species.

Keywords

Iron Calcium Growth Rate Acetic Acid Isopropanol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbige A, Chesbro W (1982)rel A and related loci are growth rate determinants forEscherichia coli in a recycling fermentor. J Gen Microbiol 128:693–703Google Scholar
  2. Bahl H, Gottwald M, Kuhn A, Rale V, Andersch W, Gottschalk G (1986) Nutritional factors affecting the ratio of öolvents produced byClostridium acetobutylicum. Appl Environ Microbiol 52:169–172Google Scholar
  3. Blanchard KC, MacDonald J (1935) Bacterial metabolism: reduction of propionaldehyde and of propionic acid byClostridium acetobutylicum. J Biol Chem 110:145–150Google Scholar
  4. Chesbro W, Evans TE, Eifert R (1979) Very slow growth ofEscherichia coli. J Bacteriol 139:625–638Google Scholar
  5. Fond O, Engrasser JM, Matta-El-Amouri G, Petitdemage H (1986) The acetone butanol fermentation on glucose and xylose. I. Regulation and kinetics in batch cultures. Biotechnol Bioeng 28:160–166Google Scholar
  6. Forsberg CW, L Donaldson, LN Gibbins (1987) Metabolism of rhamnose and other sugars by strains ofClostridium acetobutylicum and otherClostridium species. Can J Microbiol 33:21–26Google Scholar
  7. Freese E, Heinze J (1983) Metabolic and genetic control of bacterial sporulation. In: Hurst A, Gould GW (ed) The bacterial spore II. Acedemic Press, New York, pp 102–163Google Scholar
  8. George HA, Chen JS (1983) Acidic conditions are not obligatory for onset of butanol formation byClostridium beijerinckii (synonym,C. butylicum). Appl Environ Microbiol 46:321–327Google Scholar
  9. George HA, Johnson JL, Moore WE, Holdeman LV, Chen JS (1983) Acetone, isopropanol, and butanol production byClostridium beijerinckii (syn.Clostridium butylicum) andClostridium aurantibutyricum. Appl Environ Microbiol 45:1160–1163Google Scholar
  10. Hansford GS, Humphrey AE (1966) The effect of equipment scale and degree of mixing on continuous fermentation yield at low dilution rates. Biotechnol Bioeng 8:85–96Google Scholar
  11. Holt RA, Stephens GM, Morris JG (1984) Production of solvents byClostridium acetobutylicum cultures maintained at neutral pH. Appl Environ Microbiol 48:1166–1170Google Scholar
  12. Jewell JB, Coutinho JB, Kropinski AM (1986) Bioconversion of propionic byClostridium acetobutylicum NRRL 527. Curr Microbiol 13:215–219Google Scholar
  13. Jobses IML, Roels JA (1983) Experience with solvent production byClostridium beijerinckii in continuous culture. Biotechnol Bioeng 25:1187–1194Google Scholar
  14. Jones DT, van der Westhuizen A, Long S, Allcock ER, Reid SJ, Woods DR (1982) Solvent production and morphological changes inClostridium acetobutylicum. Appl Microbiol Biotechnol 20:256–261Google Scholar
  15. Long S, Jones DT, Woods DR (1984) Initiation of solvent production, clostridial stage, and endospore formation inClostridium acetobutylicum P262. Biotechnol Lett 6:529–534Google Scholar
  16. Meinecke B, Bahl H, Gottschalk G (1984) Selection of an asporogenous strain ofClostridium acetobutylicum in continuous culture under phosphate limitation. Appl Environ Microbiol 48:1064–1065Google Scholar
  17. Neijssel O, Tempest D (1979) The physiology of metabolite overproduction. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial Technology: current state, future prospects. Cambridge University Press, New YorkGoogle Scholar
  18. O'Toole DK (1983) Weighing technique for determining bacterial dry mass based on rate of moisture uptake. Appl Environ Microbiol 46:506–508Google Scholar
  19. Reysenbach AL, Ravenscroft N, Long S, Jones DT, Woods DR (1986) Characterization, biosynthesis, and regulation of granulose inClostridium acetobutylicum. Appl Environ Microbiol 52:185–190Google Scholar
  20. Roos JW, McLaughlin JK, Papoutsakis ET (1985) The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations ofClostridium acetobutylicum. Biotechnol Bioeng 27:681–694Google Scholar
  21. Speakman HB (1920) Biochemistry of the acetone and butyl alcohol fermentation of starch byBacillus granulobacter pectinovorum. J Biol Chem 41:319–343Google Scholar
  22. Stouthamer AH, van Verseveldt HW (1985) Stoichiometry of microbial growth. In: Moo-Young M (ed) Comprehensive Biotechnology 1. The principles of biotechnology. Pergamon Press, Oxford, pp 215–238Google Scholar
  23. Terracciano JS, Kashket ER (1986) Intracellular conditions required for initiation of solvent production byClostridium acetobutylicum. Appl Environ Microbiol 52:86–91Google Scholar
  24. Van Verseveldt HW, Arbige A, Chesbro W (1984a) Continuous culture of bacteria with biomass retention. Trends in Biotechnol 2:8–12Google Scholar
  25. Van Verseveldt HW, Chesbro WR, Braster M, Stouthamer AH (1984b) Eubacteria have 3 growth modes keyed to nutrient flow. Arch Microbiol 137:176:184Google Scholar
  26. Votruba J, Volesky B, Yerushalmi L (1986) Mathematical model of a batch acetone-butanol fermentation. Biotechnol Bioeng 28:247–255Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • I. Ahmed
    • 1
    • 2
  • R. A. Ross
    • 1
    • 2
  • V. K. Mathur
    • 1
    • 2
  • W. R. Chesbro
    • 1
    • 2
  1. 1.Department of MicrobiologyUniversity of New HampshireDurhamUSA
  2. 2.Department of Chemical EngineeringUniversity of New HampshireDurhamUSA

Personalised recommendations