Biodiversity & Conservation

, Volume 1, Issue 4, pp 250–262 | Cite as

Unculturable microbes detected by molecular sequences and probes

  • W. Liesack
  • E. Stackebrandt
Papers

Abstract

Nucleic acid probes have revolutionized rapid diagnostics of plant-, animal- and human-pathogenic viroids, viruses, bacteria and protozoa, and have complemented the spectrum of immunological and serological tests. Sequences of genes and rRNA, of proven potential for identification of taxa, are a valuable tool in that both the identity and the phylogenetic position of an isolate can be elucidated. On the other hand, this approach is still laborious and requires sophisticated equipment. Designation of probes does not require information about sequences, although such knowledge is extremely helpful in the formulation of highly specific oligonucleotide probes, e.g. in the case of rDNA probes, where target stretches containing variable sequences are rather short (about 10–30 nucleotides). The application of probe technologies in molecular environmental studies byin situ hybridization, screening of gene libraries and flow cytometry is in its infancy but a logical step towards reconfirmation of the identity of a species in its natural habitat.

Keywords

molecular microbial ecology unculturable organisms gene libraries DNA rRNA DNA probes polymerase chain reaction primers phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. (1961)Introduction to Soil Microbiology. New York: J. Wiley & Sons.Google Scholar
  2. Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R. and Stahl, D.A. (1990a) Combination of 16S rRNA-targeted oligonucelotide probes with flow cytometry for analyzing mixed microbial populations.Appl. Env. Microbiol. 56, 1919–25.Google Scholar
  3. Amann, R.I., Krumholz, L. and Stahl, D.A. (1990b) Fluorescent-oligonucleotide probing of white cells for determinative, phylogenetic and environmental studies in microbiology.J. Bacteriol. 172, 762–70.Google Scholar
  4. Amann, R., Springer, N., Ludwig, W., Görtz, H.-D. and Schleifer, K.-H. (1991) Identificationin situ and phylogeny of uncultured bacterial endoymbionts.Nature 351, 161–4.Google Scholar
  5. Britschgi, T.B. and Giovannoni, S.J. (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing.Appl. Env. Microbiol. 57 1707–13.Google Scholar
  6. Colwell, R.R., Brayton, P.R., Grimes, D.J., Roszak, D.B., Huq, S.A. and Palmer, L.M. (1985) Viable but non-culturableVibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms.Biotech. 3, 817–20.Google Scholar
  7. Delong, E.F. and Shah, J. (1990) Fluorescent, ribosomal RNA probes for clinical application: a research review.Diag. Clin. Test. 28, 41–4.Google Scholar
  8. DeLong, E.F., Schmidt, T.M. and Pace, N.R. (1989a) Analysis of single cells and oligotrophic picoplankton populations using 16S rRNA sequences. InRecent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R.Y. Morita and A. Uchida, eds) pp. 697–701. Tokyo: Japan Science Society Press.Google Scholar
  9. DeLong, E.F., Wickham, G.S. and Pace, N.R. (1989b) Phylogenetic stains; ribosomal RNA-based probes for the identification of single cells.Science 243, 1360–3.Google Scholar
  10. Devereux, R., Winfrey, J., Winfrey, M.R. and Stahl, D.A. (1990) Application of 16S rRNA probes to correlate communities of sulfate-reducing bacteria with sulfate reduction and mercury methylation in a marine sediment.Abstr. 90th Ann. Mtg. Am. Soc. Microbiol. 328.Google Scholar
  11. Distel, D.L., DeLong, E.F. and Waterbury, J.B. (1991) Phylogenetic characterization andin situ localization of the bacterial symbiont of shipworms (Teredinidae: bivalva) using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization.Appl. Env. Microbiol. 57, 2376–82.Google Scholar
  12. Gardes, M., White, T.J., Fortin, J.A., Bruns, T.D. and Taylor, J.W. (1991) Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA.Can. J. Bot. 69, 180–90.Google Scholar
  13. Giovannoni, S.J. (1991) The polymerase chain reaction. InNucleic Acid Techniques in Bacterial Systematics-Modern Microbiological Methods (E. Stackebrandt and M. Goodfellow, eds) pp. 177–203. Chichester: Academic Press.Google Scholar
  14. Giovannoni, S.J., DeLong, E.F., Olsen, G.J. and Pace, N.R. (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells.J. Bacteriol. 170, 720–6.Google Scholar
  15. Giovannoni, S.J., Britschgi, T.B., Moyer, C.L. and Field, K.G. (1990) Genetic diversity in Sargasso Sea bacterioplankton.Nature 345, 60–3.Google Scholar
  16. Hahn, D., Dorsch, M., Stackebrandt, E. and Akkermans, A.D.L. (1989) Synthetic oligonucleotide probes for identification ofFrankia strains.Plant Soil 118, 211–9.Google Scholar
  17. Hahn, D., Starrenburg, M.J.C. and Akkermans, A.D.L. (1990) Oligonucleotide probes that hybridize with rRNA as a tool to studyFrankia strains in root nodules.Appl. Env. Microbiol. 56 1342–6.Google Scholar
  18. Jannasch, H.W. (1979) Microbial ecology of aquatic low nutrient habitats. InStrategies of Microbial Life in Extreme Environments, (M. Shilo, ed.) pp. 243–60. Berlin: Dahlem Konferenzen.Google Scholar
  19. Jannasch, H.W. and Jones, G.E. (1959) Bacterial populations in sea water as determined by different methods of enumeration.Limol. Oceanogr. 4 128–39.Google Scholar
  20. Kemmerling, C., Witt, D., Liesack, W., Weyland, H. and Stackebrandt, E. (1990) Approaches for the molecular identification of streptomycetes in marine environment. InCurrent Topics in Marine Biotechnology (S. Miyachi, I. Karube and Y. Eshida, eds) pp. 423–6. Tokyo: Japan Society for Marine Biotechnology.Google Scholar
  21. Lee, S. and Fuhrman, J.A. (1990) DNA hybridization to compare species compositions of natural bacterioplankton assemblages.Appl. Env. Microbiol. 56, 739–46.Google Scholar
  22. Liesack, W., Ward, N. and Stackebrandt, E. (1991a) Strategies for molecular microbial ecological studies.Actinomycetes,2, 63–76.Google Scholar
  23. Liesack, W., Sela, S., Bercovier, H. and Stackebrandt, E. (1991b) Complete nucleotide sequence of theMycobacterium leprae 23S and 5S rRNA genes plus flanking regions and their potential in designing diagnostic oligonucleotide probes.FEBS Letters 281, 114–8.Google Scholar
  24. Liesack, W., Weyland, H. and Stackebrandt, E. (1991c) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of obligately barophilic bacteria.Microb. Ecol. 21, 188–201.Google Scholar
  25. Liesack, W. and Stackebrandt, E. (1992) Occurrence of novel groups of the Domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment.J. Bacteriol. 174, 5072–8.Google Scholar
  26. Moreno, E., Stackebrandt, E., Dorsch, M., Wolters, J., Busch, M. and Mayer, H. (1990)Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the classProteobacteria.J. Bacteriol. 172, 3569–76.Google Scholar
  27. Novitsky, J.A. and Morita, R.Y. (1978) Possible strategy for the survival of marine bacteria under starvation conditions.Marine Biol. 48, 289–95.Google Scholar
  28. Ogram, A.V., Sayler, G.S. and Barkay, T. (1988) The extraction and purification of microbial DNA from sediments.J. Microbiol. Methods 7, 57–66.Google Scholar
  29. Olsen, G.J., Lane, D.J., Giovannoni, S.J. and Pace, N.R. (1986) Microbial ecology and evolution: a ribosomal RNA approach.Ann. Rev. Microbiol. 40, 337–65.Google Scholar
  30. Pelletier, D.A., Paster, B.J., Weisburg, W.G., Dewhirst, F.E., Dannenberg, S. and Schroeder, I. (1991)Cristispira phylogeny by 16S rRNA sequence comparison of amplified bacterial DNA from crystalline styles.Abstr. 91st Ann. Am. Soc. Microbiol. 243.Google Scholar
  31. Relman, D.A., Loutit, J.S., Schmidt, T.M., Falkow, S. and Tompkins, L.S. (1990) The agent of bacillary angiomatosis: an approach to the identification of uncultured pathogens.New Engl. J. Med. 323, 1573–80.Google Scholar
  32. Roszak, D.B. and Colwell, R.R. (1987) Survival strategies of bacteria in the natural environment.Microbiol. Rev. 51, 365–79.Google Scholar
  33. Sambrook, J., Frtisch, E.F. and Maniatis, T. (1989)Molecular cloning: a laboratory manual. Cold Springs Harbor, NY: Cold Springs Harbor Laboratory Press.Google Scholar
  34. Sayler, G.S. and Layton, A.C. (1990) Environmental application of nucleic acid hybridization.Ann. Rev. Microbiol. 44, 625–48.Google Scholar
  35. Seewaldt, E. and Stackebrandt, E. (1982) Partial sequence of 16S ribosomal RNA and the phylogeny ofProchloron.Nature 295, 618–20.Google Scholar
  36. Stackebrandt, E. and Liesack, W. (1993) Nucleic acids and classification. InThe new bacterial systematics (M. Goodfellow, ed.). London: Academic Press (in press).Google Scholar
  37. Stackebrandt, E., Witt, D., Kemmerling, C., Kroppenstedt, R. and Liesack, W. (1991) Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes.Appl. Env. Microbiol. 57, 1468–77.Google Scholar
  38. Stahl, D.A. and Amann, R. (1991) Development and application of nucleic acid probes. InNucleic Acid Techniques in Bacterial Systematics — Modern Microbiological Methods (E. Stackebrandt and M. Goodfellow, eds.) pp. 205–48. Chichester: Academic Press.Google Scholar
  39. Stahl, D.A., Flesher, B., Mansfield, H. and Montgomery, R. (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology.Appl. Env. Microbiol. 54, 1079–84.Google Scholar
  40. Stahl, D.A., Lane, D.J., Olsen, G.J. and Pace, N.R. (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences.Appl. Env. Microbiol. 49, 1379–84.Google Scholar
  41. Tsai, Y.L. and Olson, B.H. (1991) Rapid method for direct extraction of DNA from soil and sediments.Appl. Env. Microbiol. 57, 1070–4.Google Scholar
  42. Unterman, B.M., Baumann, P. and McLean, D.L. (1989) Pea aphid symbiont relationships established by analysis of 16S rRNAs.J. Bacteriol. 171, 2970–4.Google Scholar
  43. Ward, D.M., Tayne, T.A., Anderson, K.L. and Bateson, M.M. (1987) Community structure and interactions among community members in hot spring cyanobacterial mats.Sympos. Soc. Gen. Microbiol. 41, 179–210.Google Scholar
  44. Ward, D.M., Weller, R. and Bateson, M.M. (1990a) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community.Nature 345, 63–5.Google Scholar
  45. Ward, D.M., Weller, R. and Bateson, M.M. (1990b) 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community.FEMS Microbiol. Rev. 75, 105–16.Google Scholar
  46. Ward, D.M., Bateson, M.M., Weller, R. and Ruff-Roberts, A.L. (1992) Ribosomal RNA analysis of microorganisms as they occur in nature.Adv. Microbial Ecol. (in press).Google Scholar
  47. Weisburg, W.G., Hatch, T.P. and Woese, C.R. (1986) Eubacterial origin of the chlamydiae.J. Bacteriol. 167, 570–4.Google Scholar
  48. Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study.J. Bacteriol. 173, 697–703.Google Scholar
  49. Weller, R., Weller, J.W. and Ward, D.M. (1991); 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA.Appl. Env. Microbiol. 57, 1146–51.Google Scholar
  50. Witt, D., Liesack, W. and Stackebrandt, E. (1989) Identification of streptomycetes by 16S rRNA sequences and oligonucleotide probes. InRecent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita and A. Uchida, eds) pp. 679–84. Tokyo: Japan Scientific Society Press.Google Scholar
  51. Woese, C.R. (1987) Bacterial Evolution.Microbiol. Rev. 51, 221–71.Google Scholar
  52. Xu, H.-S., Roberts, N., Singleton, F.L., Attwell, Grimes, D.J. and Colwell, R.R. (1982) Survival and viabiity of nonculturableEsherichia coli andVibrio cholerae in the estuarine and marine environment.Microbial Ecol. 8, 313–23.Google Scholar
  53. Young, J.P.W., Downer, H.L. and Eardly, B.D. (1991) Phylogeny of the photographicRhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment.J. Bacteriol. 173, 2271–7.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • W. Liesack
    • 1
  • E. Stackebrandt
    • 1
  1. 1.Department of Microbiology, Centre for Bacterial Diversity and IdentificationUniversity of QueenslandSt LuciaAustralia

Personalised recommendations