Molecular and General Genetics MGG

, Volume 152, Issue 3, pp 259–266

Kinetics of ribosome synthesis during a nutritional shift-up inEscherichia coli K-12

  • W. Scott Champney


The rates of total protein synthesis, polyribosome formation and 70S ribosome accumulation were measured following a nutritional shift-up ofEscherichia coli K-12. Changes in ribosome content and distribution during the shift-up were measured by examining the total cellular content of free and polysome-associated ribosomes using a sensitive double isotope labeling method. The kinetics of ribosomal subunit formation and the biosynthesis of subunit protein and RNA species were also defined. The results indicated that a pre-shift population of ribosomal subunits was utilized for the immediate post shift increase in both total and ribosomal-specific protein synthesis. An assembly time for new subunits of about 3 min was observed. The formation of certain ribosomal proteins during the shift suggested that new subunit assembly was limited by the rate of synthesis of particular ribosomal proteins during this growth transition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alton, T. H., Koch, A. L.: Unused protein synthetic capacity ofEscherichia coli grown in phosphate-limited chemostats. J. molec. Biol.86, 1–9 (1974)Google Scholar
  2. Champney, W. S., Sypherd, P. S.: Absence of thiolated nucleotides in ribosomal RNA ofE. coli. Biochem. biophys. Res. Commun.41, 1328–1334 (1970)Google Scholar
  3. Dennis, P. P.:In vivo stability, maturation, and relative differential synthesis rates of individual ribosomal proteins inEscherichia coli B/r. J. molec. Biol.88, 25–41 (1974a)Google Scholar
  4. Dennis, P. P.: Synthesis of individual ribosomal proteins inEscherichia coli B/r. J. molec. Biol.89, 223–232 (197b)Google Scholar
  5. Dennis, P. P., Bremer, H.: Differential rate of ribosomal protein synthesis inEscherichia coli. J. molec. Biol84, 407–422 (1974a)Google Scholar
  6. Dennis, P. P., Bremer, H.: Regulation of ribonucleic acid synthesis inEscherichia coli B/r: an analysis of a shift-up. III. Stable RNA synthesis rate and ribosomal RNA chain growth rate following a shift-up. J. molec. Biol.89, 233–239 (1974b)Google Scholar
  7. Dennis, P. P., Bremer, H.: Macromolecular composition during steady state growth ofEscherichia coli B/r. J. Bact.119, 270–281 (1974c)Google Scholar
  8. Dennis, P. P., Nomura, M.: Regulation of the expression of ribosomal protein genes inEscherichia coli. J. molec. Biol.97, 61–76 (1975)Google Scholar
  9. Dunn, J. J., Studier, F. W.: T7 early RNAs andEscherichia coli ribosomal RNAs are cut from large precursor RNAsin vivo by ribonuclease III. Proc. nat. Acad. Sci. (Wash.)70, 3296–3300 (1973)Google Scholar
  10. Flessel, C. P., Ralph, P., Rich, A.: Polyribosomes of growing bacteria. Science158, 658–660 (1967)Google Scholar
  11. Gausing, K.: Ribosomal protein inE. coli: rate of synthesis and pool size at different growth rates. Molec. gen. Genet129, 61–75 (1974)Google Scholar
  12. Gausing, K.: Synthesis of rRNA and r-protein mRNA inE. coli at different growth rates. In: Control of ribosome synthesis (N. O. Kjeldgaard and O. Maaløe, eds), pp. 292–303. New York: Academic Press 1976Google Scholar
  13. Gesteland, R. F.: Isolation and characterization of ribonuclease I mutants ofEscherichia coli. J. molec. Biol.16, 67–84 (1966)Google Scholar
  14. Gullov, K., von Meyenburg, K., Molin, S.: The size of transcriptional units for ribosomal proteins inEscherichia coli: Rates of synthesis of ribosomal proteins during a nutritional shift-up. Molec. gen. Genet.130, 271–274 (1974)Google Scholar
  15. Harney, C. E., Nakada, D.: Coordinate synthesis of ribosomal RNA and messenger for ribosomal proteins. Biochim. biophys. Acta (Amst.)213, 529–531 (1970)Google Scholar
  16. Harvey, R. J.: Regulation of ribosomal protein synthesis inEscherichia coli. J. Bact.101, 574–583 (1970)Google Scholar
  17. Harvey, R. J.: Fraction of ribosomes synthesizing protein as a function of specific growth rate. J. Bact.114, 287–293 (1973)Google Scholar
  18. Howard, G. A., Traut, R. R.: Separation and radioutography of microgram quantities of ribosomal proteins by two-dimensional polyacrylamide gel electrophoresis. FEBS Letters29, 177–180 (1973)Google Scholar
  19. Kaltschmidt, E., Wittmann, H. G.: Ribosomal proteins VII. Twodimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal. Biochem.36, 401–412 (1970a)Google Scholar
  20. Kaltschmidt, E., Wittmann, H. G.: Ribosomal Proteins. XII. Number of proteins in small and large ribosomal subunits ofEscherichia coli as determined by two-dimensional gel electrophoresis. Proc. nat. Acad. Sci. (Wash.)67, 1276–1282 (1970b)Google Scholar
  21. Kjeldgaard, N. O., Gausing, K.: Regulation of biosynthesis of ribosomes. In: Ribosomes (M. Nomura A. Tissieres, and P. Lengyel, eds.), pp. 369–392. New York: Cold Spring Harbor Laboratory 1974Google Scholar
  22. Koch, A. L.: Overall controls on the biosynthesis of ribosomes in growing bacteria. J. theor. Biol.28, 203–231 (1970)Google Scholar
  23. Koch, A. L., Deppe, C. S.:In vivo assay of protein synthesizing capacity ofEscherichia coli from slowly growing chemostat cultures. J. molec. Biol.55, 549–562 (1971)Google Scholar
  24. Maaløe, O., Kjeldgaard, N. O.: Control of macromolecular synthesis. New York: Benjamin 1966Google Scholar
  25. Mangiarotti, G., Schlessinger, D.: Polyribosome metabolism inEscherichia coli. II. Formation and lifetime of messenger RNA molecules, ribosomal subunit couples and polyribosomes. J. molec. Biol.29, 395–418 (1967)Google Scholar
  26. Marvaldi, J., Pichon, J., Delaage, M., Marchis-Mouren, G.: Individual ribosomal protein pool size and turnover rate inEscherichia coli. J. molec. Biol.84, 83–96 (1974)Google Scholar
  27. Michaels, G. A.: Ribosome maturation ofEscherichia coli growing at different growth rates. J. Bact.107, 385–387 (1972)Google Scholar
  28. Molin, S., von Meyenburg, K., Gullov, K., Maaløe, O.: The size of transcriptional units for ribosomal proteins inEscherichia coli. Molec. gen. Genet.129, 11–26 (1974)Google Scholar
  29. Nierlich, D. P.: Regulation of ribonucleic acid synthesis in growing bacterial cells I Control over the total rate of RNA synthesis. J. molec. Biol.72, 751–764 (1972)Google Scholar
  30. Nikolaev, N., Silengo, L., Schlessinger, D.: Synthesis of large precursor to ribosomal RNA in a mutant ofEscherichia coli. Proc. nat. Acad. Sci. (Wash.)70, 3361–3365 (1973)Google Scholar
  31. Norris, T. E., Koch, A. L.: Effect of growth rate on the relative rates of synthesis of messenger, ribosomal and transfer RNA inEscherichia coli. J. molec. Biol.64, 633–649 (1972)Google Scholar
  32. Schlessinger, D.: Ribosome formation inEscherichia coli. In: Ribosomes (M. Nomura, A. Tissieres, and P. Lengyel, eds.), pp. 393–416. New York: Cold Spring Harbor Laboratory 1974Google Scholar
  33. Schlief, R.: Control of production of ribosomal proteins. J. molec. Biol.27, 41–55 (1969)Google Scholar
  34. Sypherd, P. S., Strauss, N.: Chloramphenicol-promoted repression of β-galactosidase synthesis inEscherichia coli. Proc. nat. Acad. Sci. (Wash.)49, 400–407 (1962)Google Scholar
  35. Varricchio, F., Monier, R.: Ribosome pattern inEscherichia coli growing at various growth rates. J. Bact.108, 105–110 (1971)Google Scholar
  36. Young, R., Dennis, P. P.: Balanced production of 30S and 50S ribosomal proteins after a nutritional shift-up. J. Bact.124, 1618–1620 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • W. Scott Champney
    • 1
    • 2
  1. 1.Program in GeneticsUniversity of GeorgiaAthensUSA
  2. 2.Department of BiochemistryUniversity of GeorgiaAthensUSA

Personalised recommendations