Journal of Comparative Physiology B

, Volume 156, Issue 1, pp 143–149 | Cite as

Allometric relations, metabolism and heart conductance in clusters of honey bees at cool temperatures

  • Edward E. Southwick
Article

Summary

Clusters of honey bees,Apis mellifera carnica, showed a clear dependence of oxygen consumption and heat conductance on bee cluster mass (between 5 g and 1.2 kg) when exposed to a cold temperature (2°C) overnight. As the bee cluster mass was increased, total cluster metabolism increased. Mass-specific oxygen consumption,\(\dot V_{O_2 } \), decreased with increasing mass following the relation:\(\dot V_{O_2 } \) = 22.69BW −0.479 (Fig. 1). Larger clusters of bees had lower heat conductance (i.e., better insulation) than the smaller groups (Fig. 4). The mechanisms of adaptation and adjustment to cold temperature in bee clusters are discussed and compared with those of mammals and birds.

Abbreviations

Ta

ambient temperature in environmental cabinet

Iin

air temperature inside bee chamber but outside bees

Tc

core temperature of bee cluster

Tb

body temperature

\(\dot V_{O_2 } \)

oxygen consumption

C

heat conductance

BW

body mass or cluster mass

MR

metabolic rate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MD (1959) Respiration rates of worker honey bees of different ages and at different temperatures. J Exp Biol 36:92–101Google Scholar
  2. Asahina E (1969) Frost resistance in insects. Adv Insect Physiol 6:1–49CrossRefGoogle Scholar
  3. Esch H (1964) Über den Zusammenhang zwischen Temperatur, Aktionspotentialen und Thoraxbewegungen bei der Honigbiene (Apis mellifica L.). Z Vergl Physiol 48:547–551Google Scholar
  4. Free JB, Spencer-Booth HY (1960) Chill-coma and cold death temperatures ofApis mellifica. Entomol Exp Appl 3:222–230CrossRefGoogle Scholar
  5. Gates BN (1914) The temperature of the bee colony. Bull USDA No 96:1–29Google Scholar
  6. Gordon MS (1983) Animal physiology: principles and adaptations. 4th edn, Macmillan, New YorkGoogle Scholar
  7. Heldmaier G (1972) Cold-adaptative changes of heat production in mammals. In: Proc Int Symp Environ Physiol: Bioenergetics. Fed Am Soc Exp Biol, Bethesda, MD (pp 79–82)Google Scholar
  8. Heinrich B (1981) The mechanisms and energetics of honeybee swarm temperature regulation. J Exp Biol 91:25–55Google Scholar
  9. Herreid CF II, Kessel B (1967) Thermal conductance in birds and mammals. Comp Biochem Physiol 21:405–414PubMedCrossRefGoogle Scholar
  10. Jungries AM (1978) Insect dormancy. In: Culter ME (ed) Dormancy and developmental arrest: experimental analysis in animals and plants. Academic Press, New York, pp 47–112Google Scholar
  11. Kleiber M (1961) The fire of life. Wiley, New York LondonGoogle Scholar
  12. Koeniger N (1978) Das Wärmen der Brut bei der Honigbiene (Apis mellifera L.). Apidologia 9:305–320Google Scholar
  13. Kronenberg F, Heller HC (1982) Colonial thermoregulation in honey bees (Apis mellifera). J Comp Physiol 148:65–76Google Scholar
  14. Owens CD (1971) The thermology of wintering honey bee colonies. USDA Tech Bull No 1429:1–32Google Scholar
  15. Phillips EF, Demuth GS (1914) The temperature of the honey bee cluster in winter. Bull USDA, No 93:1–16Google Scholar
  16. Precht H, Christophersen J, Hensel H, Larcher W (1973) Temperature and life. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Ritter W, Koeniger N (1977) Influence of the brood on the thermoregulation of honey bee colonies. Proc VIII Congr IUSSI, Wageningen, pp 283–284Google Scholar
  18. Ruttner F (1978) Races of bees. In: Dadant and Sons (eds) The hive and the honey bee. Dadant, Hamilton, Illinois, pp 19–38Google Scholar
  19. Ruttner F (1978) Über die Anwendbarkeit einiger Regeln der Tiergeographie auf die Geographische Variabilität der Honigbiene. Arbeitsgemeinschaft Institute Bienenforsch, Hohenheim, March 1984. Apidologie 15:235Google Scholar
  20. Scholander PF (1955) Evolution of climatic adaptation in homeotherms. Evolution 9:15–26CrossRefGoogle Scholar
  21. Seeley TD, Morse RA (1978) Nest site selection by the honey beeApis mellifera L. Insectes. Soc 23:495–512CrossRefGoogle Scholar
  22. Southwick EE (1982) Metabolic energy of intact honey bee colonies. Comp Biochem Physiol 71A:277–281CrossRefGoogle Scholar
  23. Southwick EE (1983) The honey bee cluster as a homeothermic superorganism. Comp Biochem Physiol 75A:641–645CrossRefGoogle Scholar
  24. Southwick EE, Mugaas JN (1971) A hypothetical homeotherm: the honey bee hive. Comp Biochem Physiol 40A:935–944CrossRefGoogle Scholar
  25. Snodgrass RE (1956) Anatomy of the honey bee. Cornell University Press, Ithaca, New YorkGoogle Scholar
  26. Umbreit WW (1964) Manometric techniques. Burgess, MinneapolisGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Edward E. Southwick
    • 1
  1. 1.Fachbereich BiologieJ.W. Goethe-Universität, Institut für Bienenkunde (Polytechnische Gesellschaft), Frankfurt/MOberurselGermany

Personalised recommendations