Journal of Low Temperature Physics

, Volume 93, Issue 5–6, pp 861–878 | Cite as

The role of the condensate in the existence of phonons and rotons

  • Henry R. Glyde


Interpretations of the characteristic phonon-roton excitations in superfluid4He are discussed to assess the role of the condensate. In the celebrated Landau, Feynman, Feenberg and subsequent Correlated Basic Function methods, the phonon-roton excitations are interpreted as collective density excitations. This picture, suitably modified at higher Q to take account of the correlated motion of neighbors (backflow), provides our best description of neutron scattering data at low temperature. The condensate does not play an explicit role. In the Field Theory, second quantized formulation of Bogoliubov, Hugenholtz and Pines, Gavoret and Nozières and the subsequent Dielectric Function formulation, the condensate plays an explicit role. Because of the condensate, both regular density (particle-hole) and single particle excitations contribute to the density response. The regular density (two-particle) and single particle excitations mix as particles scatter into and out of the condensate. This Density-Quasiparticle picture provides a good description of the temperature dependence of neutron scattering data. From this description, the phonon at low Q is interpreted as a joint density/quasiparticle mode strongly coupled via the condensate. At higher Q, the sharp maxon-roton is interpreted as a quasiparticle excitation less strongly coupled into the density. The sharp maxon-roton peak is a unique feature of the condensate and could not be observed in S(Q, ω) without a condensate.

PACS numbers

67.40D6 67.40-W 61.12-q 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.F. Talbot, H.R. Glyde, W.G. Stirling and E.C. Svensson, Phys. Rev.B38, 11229 (1988)Google Scholar
  2. 2.
    H.R. Glyde and W.G. Stirling, inPhonons 89 edited by S. Hunklinger, W. Ludwig and G. Weiss (World Scientific, Singapore, 1990)Google Scholar
  3. 3.
    W.G. Stirling and H.R. Glyde, Phys. Rev.B41, 4224 (1990)Google Scholar
  4. 4.
    H.R. Glyde and A. Griffin, Phys. Rev. Lett.65, 1454 (1990)Google Scholar
  5. 5.
    see A. Griffin, E.C. Svensson, W.G. Stirling, H.R. Glyde inExcitations in 2D and 3D Quantum Fluids, edited by A.F.G. Wyatt and H.J. Lauter (Plenum, NY 1990)Google Scholar
  6. 6.
    W.S. Wu, S.A. Vitiello, L. Reatto and M.H. Kalos, Phys. Rev. Lett.67, 1446 (1991)Google Scholar
  7. 7.
    G.W. Masserini, L. Reatto, and S.A. Vitiello, Phys. Rev. Lett.69, 2098 (1992)Google Scholar
  8. 8.
    Yu. A. Nepomnyashchy, Phys. Rev.B46, 6611 (1992)Google Scholar
  9. 9.
    S. Stringari, Phys. Rev.B46, 2974 (1992)Google Scholar
  10. 10.
    H.R. Glyde, Phys. Rev.B45, 7321 (1992)Google Scholar
  11. 11.
    B.E. Clements, E. Krotscheck and J.A. Smith (preprint) (1993)Google Scholar
  12. 12.
    K.H. Andersen, Ph.D. Thesis (Keele U.) 1991 and unpublishedGoogle Scholar
  13. 13.
    K.H. Andersen and B. Fåk, Phys. Lett.A160, 468 (1991) and private comm.Google Scholar
  14. 14.
    K.H. Andersen, W.G. Stirling, R. Scherm, A. Stunault, B. Fåk, H. Godfrin, A.J. Dianoux, J. Phys. Cond. Matter (submitted)Google Scholar
  15. 15.
    B. Fåk, L.P. Regnault and J. Bossy, J. Low Temp. Phys.89, 345 (1992)Google Scholar
  16. 16.
    N.M. Blagoveshchenskii et al., Pis'ma (JETP) Lett.57, 414 (1993)Google Scholar
  17. 17.
    A.D.B. Woods and E.C. Svensson, Phys. Rev. Lett.41, 974 (1978)Google Scholar
  18. 18.
    For references to earlier work, see H.R. Glyde and E.C. Svensson, inNeutron Scattering, edited by D.L. Price and K. Sköld, Methods of Exp. Phys., Vol. 23, Part B, (Academic Press, NY 1987), p. 303Google Scholar
  19. 19.
    L.D. Landau, J. Phys. U.S.S.R.5, 71 (1941); 11, 91 (1947)Google Scholar
  20. 20.
    R.P. Feynman, Phys. Rev.94, 262 (1954)Google Scholar
  21. 21.
    R.P. Feynman and M. Cohen, Phys. Rev.102, 1189 (1956)Google Scholar
  22. 22.
    E. Feenberg,Theory of Quantum Fluids (Academic Press, NY, 1969)Google Scholar
  23. 23.
    H.W. Jackson and E. Feenberg, Rev. Mod. Phys.34, 686 (1962)Google Scholar
  24. 24.
    H.W. Jackson, Phys. Rev.A4, 2386 (1971) andA8, 1529 (1973)Google Scholar
  25. 25.
    C.E. Campbell, inProgress in Liquid Physics (C.A. Croxton, ed.) p. 213. (Wiley, New York, 1978)Google Scholar
  26. 26.
    E. Manousakis and V.R. Pandharipande, Phys. Rev.B30, 5062 (1984)Google Scholar
  27. 27.
    E. Manousakis and V.R. Pandharipande, Phys. Rev.B33, 150 (1986)Google Scholar
  28. 28.
    C.E. Campbell, in Condensed Matter Theories, Vol. 8, edited by L. Blum and F.B. Malik (Plenum, NY, 1993)Google Scholar
  29. 29.
    N.N. Bogoliubov, J. Phys. U.S.S.R.11, 23 (1947)Google Scholar
  30. 30.
    S.T. Beliaev, Sov. Phys. JETP7, 289 (1958)Google Scholar
  31. 31.
    N. Hugenholtz and D. Pines, Phys. Rev.116, 489 (1959)Google Scholar
  32. 32.
    J. Gavoret and P. Nozières, Ann. Phys. NY28, 349 (1964)Google Scholar
  33. 33.
    A.A. Nepomnyashchy and Yu. A. Nepomnyashchy, Sov. Phys. JETP Lett.21, 1 (1975); Yu. A. Nepomnyashchy and A.A. Nepomnyashchy, Sov. Phys. JETP48, 493 (1978)Google Scholar
  34. 34.
    P.C. Hohenberg and P.C. Martin, Phys. Rev. Lett.12, 69 (1964)Google Scholar
  35. 35.
    S.-k. Ma and C.W. Woo, Phys. Rev.159, 165 (1967)Google Scholar
  36. 36.
    A. Griffin and T.H. Cheung, Phys. Rev.A7, 2086 (1973)Google Scholar
  37. 37.
    P. Szépfalusy and I. Kondor, Ann. Phys., NY82, 1 (1974)Google Scholar
  38. 38.
    P. Nozières and D. Pines,The Theory of Quantum Liquids, Vol. II (Addison-Wesley, NY, 1990)Google Scholar
  39. 39.
    D. Pines in Physics Today,42 (2), 61 (1989)Google Scholar
  40. 40.
    R.J. Donnelly, J.A. Donnelly, and R. N. Hills, J. Low Temp. Phys.44, 471 (1981)Google Scholar
  41. 41.
    A. Bijl, Physica7, 869 (1940)Google Scholar
  42. 42.
    D.K. Lee and F.J. Lee, Phys. Rev.B11, 4318 (1975)Google Scholar
  43. 43.
    V.F. Sears, E.C. Svensson, P. Martel, and A.D.B. Woods, Phys. Rev. Lett.49, 279 (1982)Google Scholar
  44. 44.
    E.C. Svensson and V.F. Sears, inFrontiers of Neutron Scattering (R.J. Birgeneau, D.E. Moncton, and A. Zeilinger, eds.) p. 126. North-Holland, Amsterdam, 1986. [Reprinted from Physica137B, 126 (1986).]Google Scholar
  45. 45.
    P.E. Sokol and W.M. Snow in Ref. 5Google Scholar
  46. 46.
    T.R. Sosnick, W.M. Snow, R.N. Silver and P.E. Sokol, Phys. Rev.B43, 216 (1991)Google Scholar
  47. 47.
    W.G. Stirling, inProceedings of the 2nd International Conference on Phonon Physics, edited by J. Kollar, N. Kroó, N. Menyhard, and T. Siklos (World Scientific, Singapore, 1985), p. 829.Google Scholar
  48. 48.
    D. Pines inQuantum Fluids, edited by D.F. Brewer (North Holland, Amsterdam, 1966), p. 257.Google Scholar
  49. 49.
    For a detailed derivation of (12), see H.R. Glyde, inCondensed Matter Theories, edited by L. Blum and F.B. Malik, (Plenum, New York, 1993) p. 159.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Henry R. Glyde
    • 1
  1. 1.Department of Physics and AstronomyUniversity of DelawareNewarkUSA

Personalised recommendations