Advertisement

Journal of comparative physiology

, Volume 138, Issue 4, pp 321–334 | Cite as

Interrelationship of static mechanical factors and anatomical structure in lung evolution

  • S. F. Perry
  • H. -R. Duncker
Article

Summary

The inflation curves in 8 reptilian and in 2 avian lungs are sigmoid in comparison with the complex curve in the rat. Compliance is greatest in the lungs of those reptiles possessing well developed, membranous lung regions, and is similar to the extremely high compliance of avian air sacs. The body-weight standardized compliance of mammalian lungs is 1 to 2 orders of magnitude lower than that in reptilian lungs or in avian air sacs. Comparison of breathing pattern, elastic work of breathing and ventilatory rate indicates that a low-work strategy predominates in reptiles and in birds, which are obligatory rib breathers. Mammals can sustain a work rate per unit ventilation rate\(\left( {{{\dot w} \mathord{\left/ {\vphantom {{\dot w} {\dot V{\text{E}}}}} \right. \kern-\nulldelimiterspace} {\dot V{\text{E}}}}} \right)\) some 10 times greater than that of other groups because of efficient diaphragm breathing. The evolutionary implications of static mechanics for lung structure are discussed.

Keywords

Work Rate Breathing Pattern Ventilation Rate Mechanical Factor Lung Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachofen, H., Hildebrandt, J., Bachofen, M.: Pressure-volume curves of air- and liquid-filled excised lungs — surface tensionin situ. J. Appl. Physiol.29, 422–431 (1970)Google Scholar
  2. Bennett, A.F.: Ventilation of two species of lizards during rest and activity. Comp. Biochem. Physiol.46A, 653–671 (1973)Google Scholar
  3. Berger, M., Hart, J.S.: Physiology and energetics of flight. In: Avian biology, Vol. 4. Farner, D.S., King, J.R. (eds.), pp. 416–477 London: Academic Press 1974Google Scholar
  4. Bernstein, L.: The elastic pressure-volume curves of the lungs and thorax of the living rabbit. J. Physiol.138, 473–487 (1957)Google Scholar
  5. Brink, A.S.: Speculations on some advanced mammalian characteristics in the higher mammal-like reptiles. Paleontol. Africana4, 77–96 (1956)Google Scholar
  6. Charig, A.J.: Dinosaur monophyly and a new class of vertebrates: a critical review. In: Morphology and biology of reptiles. Bellairs, A.d'A., Cox, C.B. (eds.), pp. 65–104 London: Academic Press 1976Google Scholar
  7. Cragg, P.A.: Ventilatory patterns and variables in rest and activity in the lizard,Lacerta. Comp. Biochem. Physiol.60A, 399–410 (1978)Google Scholar
  8. Crosfill, M.L., Widdicombe, J.G.: Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J. Physiol.158, 1–14 (1961)Google Scholar
  9. Davis, J.N., Goldman, M., Loh, L., Casson, M.: Diaphragm function and alveolar hypoventilation. Quart. J. Med., New Ser.45, 87–100 (1976)Google Scholar
  10. Desmond, A.J.: The hot-blooded dinosaurs. London:Blond and Briggs 1975Google Scholar
  11. Dmi'el, R.: Effect of activity and temperature on metabolism and water loss in snakes. Am. J. Physiol.223, 510–516 (1972)Google Scholar
  12. Donnelly, P., Woolcock, A.J.: Ventilation and gas exchange in the carpet python,Morelia spilotes variegata. J. Comp. Physiol.122, 403–418 (1977)Google Scholar
  13. Duncker, H.-R.: The lung air sac system of birds. Adv. Anat. Embryol. Cell Biol.45, 1–171 (1971)Google Scholar
  14. Duncker, H.-R.: Structure of avian lungs. Respir. Physiol.14, 44–63 (1972)Google Scholar
  15. Duncker, H.-R.: Funktionsmorphologie des Atemapparates und Coelomgliederung bei Reptilien, Vögeln und Säugern. Verh. Dtsch. Zool. Ges.1978, 99–132 (1978)Google Scholar
  16. Duncker, H.-R., Schlüter, O.: Die Darstellung der Lungen und Luftsäcke der Vögel. Teil II. Präparator10, 49–60 (1964)Google Scholar
  17. Gans, C., Clark, B.: Studies on ventilation ofCaiman crocodilus (Crocodilia: Reptilia). Respir. Physiol.26, 285–301 (1976)Google Scholar
  18. Gratz, R.K.: Ventilation and gas exchange in the diamondback water snake,Natrix rhombifera. J. Comp. Physiol.127, 299–305 (1978)Google Scholar
  19. Gratz, R.K.: Ventilatory response of the diamondback water snake,Natrix rhombifera to hypoxia, hypercapnia and increased oxygen demand. J. Comp. Physiol.129, 105–110 (1979)Google Scholar
  20. Hart, J.S., Roy, O.Z.: Respiratory and cardiac responses to flight in pigeons. Physiol. Zool.39, 291–303 (1966)Google Scholar
  21. Jackson, D.C.: Mechanical basis for lung volume variability in the turtlePseudemys scripta elegans. Am. J. Physiol.220, 754–758 (1971)Google Scholar
  22. Jackson, D.C., Palmer, S.E., Meadow, W.L.: The effects of temperature and carbon dioxide breathing on ventilation and acid-base status of turtles. Respir. Physiol.20, 131–146 (1974)Google Scholar
  23. Nielsen, B.: On the regulation of respiration in reptiles. I. The effect of temperature and CO2 on the respiration of lizards (Lacerta). J. Exp. Biol.38, 301–314 (1961)Google Scholar
  24. Nielson, D., Olsen, D.B.: The role of alveolar recruitment and de-recruitment in pressure-volume hysteresis. in lungs. Respir. Physiol.32, 63–77 (1978)Google Scholar
  25. Ogawa, Ch.: Contributions to the histology of the respiratory spaces of the vertebrate lungs. Am. J. Anat.27, 333–393 (1920)Google Scholar
  26. Otten, G.: Volumetrie des Lungen-Luftsacksystems von Haustaube, Bläßhuhn und Höckerschwan. Dissertation, University of Hamburg (1973)Google Scholar
  27. Otto, H., Roesch, H.W.: Die Bedeutung der elastischen Fasern der Lungentextur in der Phylogenese. (The significance of elastic fibers of the lung tissue in phylogenesis). Prax. Pneumol.20, 127–135 (1966)Google Scholar
  28. Pasquis, P., Lacaisse, A., Dejours, P.: Maximal oxygen uptake in four species of small animals. Respir. Physiol.9, 298–309 (1970)Google Scholar
  29. Pattle, R.E., Hopkinson, D.A.W.: Lung lining in the bird, reptile and amphibian. Nature200, 894 (1963)Google Scholar
  30. Perry, S.F.: Quantitative anatomy of the lungs of the red-eared turtle,Pseudemys scripta elegans. Respir. Physiol.35, 245–262 (1978)Google Scholar
  31. Perry, S.F., Duncker, H.-R.: Lung architecture, volume and static mechanics in five species of lizards. Respir. Physiol.34, 61–81 (1978)Google Scholar
  32. Romer, A.S.: Vertebrate paleontology. Third edition. Chicago: Univ. Chicago Press 1966Google Scholar
  33. Sant'Ambrogio, G., Miani, A., Camporesi, E., Pizzini, G.: Ventilatory response to hypercapnia in phrenictomized rabbits and cats. Respir. Physiol.10, 236–248 (1970)Google Scholar
  34. Scheid, P., Piiper, J.: Volume, ventilation and compliance of the respiratory system in the domestic fowl. Respir. Physiol.6, 298–308 (1969)Google Scholar
  35. Scheid, P., Piiper, J.: Direct measurement of the pathway of respired gas in duck lungs. Respir. Physiol.11, 308–314 (1971)Google Scholar
  36. Wood, S.C., Lenfant, C.J.M.: Respiration: Mechanics, control and gas exchange. In: Biology of the reptilia, Vol. 5. Gans, C., Dawson, W. (eds), pp. 225–274 New York: Academic Press 1976Google Scholar
  37. Wood, S.C., Glass, M.L., Johansen, K.: Effects of temperature on respiration and acid-base balance in a monitor lizard. J. Comp. Physiol.116, 287–296 (1977)Google Scholar
  38. Wood, S.C., Johansen, K., Glass, M.L., Maloiy, G.M.O.: Aerobic metabolism of the lizardVaranus exanthematicus: effects of activity, temperature, and size. J. Comp. Physiol.127, 331–336 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • S. F. Perry
    • 1
  • H. -R. Duncker
    • 2
  1. 1.Pachbereich IVUniversität OldenburgOldenburgGermany
  2. 2.Zentrum für Anatomie und CytobiologieJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations