Journal of comparative physiology

, Volume 133, Issue 3, pp 167–175 | Cite as

Subunit heterogeneity in arthropod hemocyanins: II. Crustacea

  • J. Markl
  • A. Hofer
  • G. Bauer
  • A. Markl
  • B. Kempter
  • M. Brenzinger
  • B. Linzen


  1. 1.

    The hemocyanins of 10 decapod Crustacea were dissociated and their subunits analyzed by high resolution polyacrylamide electrophoresis (PAGE): 5 brachyuran crabs (Cancer pagurus, Carcinus maenas, Macropipus holsatus, Hyas araneus, Maja squinado), 3 Astacura (Astacus leptodactylus, Homarus americanus, Homarus gammarus) and the spiny lobstersPalinurus vulgaris andPanulirus interruptus

  2. 2.

    All of the species save the spiny lobsters possess a major hemocyanin component sedimenting with 24 S. A second hemocyanin component sedimenting with ca 16 S was found inH. gammarus, M. squinado, C. pagurus andM. holsatus (about 10 per cent in each case) and inA. leptodactylus (about 25 per cent). A second, major blood protein (10–25% of the total blood protein) was observed inH. gammarus where its sedimentation coefficient was 24 S,M. squinado (16 S),H. araneus (24 S) andC. pagurus (16 S). This second protein has no respiratory function. Two such non-respiratory proteins sedimenting with 24 S and 16 S were found inH. americanus.

  3. 3.

    Between 2 and 7 hemocyanin bands were obtained after incubation with sodium dodecylsulfate (SDS) and β-mercaptoethanol and subsequent electrophoresis in polyacrylamide gradients. The average molecular weight was about 75,000 in the crabs, 80,000 in the crayfishes and 85,000 in the spiny lobsters. The non-respiratory proteins yield between one and four chains with molecular weights ranging from 76,000 to 87,000.

  4. 4.

    The hemocyanins were dissociated at pH 9.6 into “native” subunits, but dissociation was not quantitative in several species. By gel filtration, the products were separated into undissociated material and hemocyanin monomers (5 S). InAstacus leptodactylus a dimeric subunit (7 S) was obtained in addition; its components are linked by a disulfide bridge. The subunit mixtures were separated by PAGE into 4 to 6 distinct bands.

  5. 5.

    To establish the total number of different polypeptide chains present in each hemocyanin, the two electrophoretic patterns were related to each other by preparative isolation of “native” subunits and subsequent analysis in SDS-PAGE. The number of different polypeptide chains ranges from four to seven in the species studied by us. In those species which contained both 24 S and 16 S hemocyanin, more different polypeptide chains were found in the 24 S hemocyanin than in the 16 S hemocyanin, the only exception beingHomarus gammarus.



Average Molecular Weight Polypeptide Chain Disulfide Bridge Electrophoretic Pattern Blood Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, A.A. Van den, Gaastra, W., Kuiper, H.A.: Heterogeneity ofPanulirus interruptus hemocyanin. In: Structure and function of haemocyanin. Bannister, J.V. (ed.), pp. 6–12. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  2. Berthet, J., Baudhuin, P., Wibo, M.: Caractéristiques des hémocyanines d' Isopodes. Arch. Int. Physiol. Biochim.72, 676–677 (1964)Google Scholar
  3. Bijlholt, M.M.C., Bruggen, E.F.J. van, Bonaventura, J.: Dissociation and reassembly ofLimulus polyphemus hemocyanin. Eur. J. Biochem.95, 399–405 (1979)Google Scholar
  4. Brouwer, M., Bonaventura, C., Bonaventura, J.: Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp,Penaeus setiferus. Biochemistry17, 2148–2154 (1978)Google Scholar
  5. Busselen, P.: The electrophoretic heterogeneity ofCarcinus maenas hemocyanin. Arch. Biochem. Biophys.137, 415–420 (1970)Google Scholar
  6. Chantler, E.N., Harris, R.R., Bannister, W.H.: Oxygenation and and aggregation of haemocyanin fromCarcinus mediterraneus andPotamon edulis. Comp. Biochem. Physiol.46 A, 333–343 (1973)Google Scholar
  7. Ellerton, H.D., Carpenter, D., Holde, K.E. Van: Physical studies of hemocyanins. V. Characterization and subunit structure of the hemocyanin ofCancer magister. Biochemistry9, 2225–2232 (1970)Google Scholar
  8. Ellerton, H.D., Collins, L.B., Gale, J.S., Yung, A.Y.P.: The subunit structure of the hemocyanin from the crayfishJasus edwardsii. Biophys. Chem.6, 47–57 (1977)Google Scholar
  9. Eriksson-Quensel, I.-B., Svedberg, T.: The molecular weights and pH-stability regions of the hemocyanins. Biol. Bull.71, 498–547 (1936)Google Scholar
  10. Ghiretti, F., Ghiretti-Magaldi, A., Salvato, B.: The chemical basis of the evolution of hemocyanins. In: Comparative physiology. Bolis, L., Schmidt-Nielsen, K., Maddrell, S.H.P. (eds.), pp. 509–522. Amsterdam: North-Holland Publishing Co. 1973Google Scholar
  11. Giamberardino, L. Di: Dissociation ofEriphia hemocyanin. Arch. Biochem. Biophys.118, 273–278 (1967)Google Scholar
  12. Hamlin, L.M., Fish, W.W.: The subunit characterization ofCallinectes sapidus hemocyanin. Biochim. Biophys. Acta491, 46–52 (1977)Google Scholar
  13. Holde, K.E. Van, Bruggen, E.F.J. van: The hemocyanins. In: Subunits in biological systems. Timasheff, S.N., Fasman, G.D. (eds.), pp. 1–53, New York: Marcel Dekker 1971Google Scholar
  14. Jeffrey, P.D., Shaw, D.C., Treacy, G.B.: Hemocyanin from the Australian freshwater crayfishCherax destructor. Studies of two different monomers and their participation in the formation of multiple hexamers. Biochemistry15, 5527–5533 (1976)Google Scholar
  15. Johnston, W., James, T.W., Barber, A.A.: Oxygen binding characteristics of lobster hemocyanin and its subunits. Comp. Biochem. Physiol.22, 261–271 (1967)Google Scholar
  16. Joubert, F.J.: Haemocyanin of the crawfish (Jasus lalandii). Biochim. Biophys. Acta14, 127–134 (1954)Google Scholar
  17. Kuiper, H.A., Gaastra, W., Beintema, J.J., Bruggen, E.F.J. van, Schepman, A.M.H., Drenth, J.: Subunit composition, X-ray diffraction, amino acid analysis and oxygen binding behaviour ofPanulirus interruptus hemocyanin. J. Mol. Biol.99, 619–629 (1975)Google Scholar
  18. Laemmli, U.K.: Cleavage of structural proteins during assembly of the head of bacteriophage T 4. Nature London227, 680–685 (1970)Google Scholar
  19. Lamy, J., Lamy, J., Baglin, M.-C., Weill, J.: Scorpion hemocyanin subunits: properties, dissociation, association. In: Structure and function of haemocyanin. Bannister, J.V. (ed.), pp. 37–49. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  20. Lamy, J., Lamy, J., Weill, J., Markl, J., Schneider, H.-J., Linzen, B.: Hemocyanins in spiders, VII. Immunological comparison of the subunits ofEurypelma californicum hemocyanin. Hoppe-Seyler's Z. Physiol. Chem.360, 889–895 (1979a)Google Scholar
  21. Lamy, J., Lamy, J., Weill, J.: Arthropod hemocyanin structure. Isolation of eight subunits in the scorpion. Arch. Biochem. Biophys.193, 140–149 (1979b)Google Scholar
  22. Loehr, J.S., Mason, H.S.: Dimorphism ofCancer magister hemocyanin subunits. Biochem. Biophys. Res. Comm.51, 741–745 (1973)Google Scholar
  23. Markl, J., Schmid, R., Czichos-Tiedt, S., Linzen, B.: Haemocyanins in spiders. III. Chemical and physical properties of the proteins inDugesiella andCupiennius blood. Hoppe-Seyler's Z. Physiol. Chem.357, 1713–1725 (1976)Google Scholar
  24. Markl, J., Markl, A., Hofer, A., Schartau, W., Linzen, B.: Heterogene Untereinheiten bei Arthropoden-Hämocyaninen. Verh. Dtsch. Zool. Ges.1978, 265 (1978)Google Scholar
  25. Markl, J., Markl, A., Schartau, W., Linzen, B.: Subunit heterogeneity in arthropod hemocyanins: I. Chelicerata. J. Comp. Physiol.130, 283–292 (1979a)Google Scholar
  26. Markl, J., Strych, W., Schartau, W., Schneider, H.-J., Schöberl, P., Linzen, B.: Hemocyanins in spiders. VI. Comparison of the polypeptide chains ofEurypelma californicum hemocyanin. Hoppe-Seyler's Z. Physiol. Chem.360, 639–650 (1979b)Google Scholar
  27. Miller, K.I., Eldred, N.W., Arisaka, F., Holde, K.E. Van: Structure and function of hemocyanin from thalassinid shrimp. J. Comp. Physiol.115, 171–184 (1977)Google Scholar
  28. Moore, C.H., Henderson, R.W., Nichol, L.W.: An examination of the polymerization behavior ofJasus lalandii haemocyanin and its relation to the allosteric binding of oxygen. Biochemistry7, 4075–4085 (1968)Google Scholar
  29. Murray, A.C., Jeffrey, P.D.: Hemocyanin from the Australian freshwater crayfish,Cherax destructor. Subunit heterogeneity. Biochemistry13, 3667–3671 (1974)Google Scholar
  30. Pickett, S.M., Riggs, A.F., Larimer, J.L.: Lobster hemocyanin: properties of the minimum functional subunit and of aggregates. Science151, 1005–1007 (1966)Google Scholar
  31. Robinson, H.A., Ellerton, H.D.: Heterogeneous subunits of the hemocyanins fromJasus edwardsii andOvalipes catharus. In: Structure and function of haemocyanin. Baunister, J.V. (ed.), pp. 55–70. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  32. Schneider, H.-J., Markl, J., Schartau, W., Linzen, B.: Hemocyanins in spiders. IV. Subunit heterogeneity ofEurypelma (Dugesiella) hemocyanin and separation of polypeptide chains. Hoppe-Seyler's Z. Physiol. Chem.358, 1133–1141 (1977)Google Scholar
  33. Sevilla, C., Lagarrigue, J.-G.: Êtude comparée des hémocyanines deLigia italica et d'Armadillo officinalis (Crustacés, Isopodes, Oniscoides). C.R. Acad. Sci. Paris, Sér. D282, 893–896 (1976)Google Scholar
  34. Sevilla, C.: Les hémocyanines chez les oniscoides. Dissociation sous l'influence du pH et donées structurales. Arch. Int. Physiol. Biochim.85, 125–131 (1977)Google Scholar
  35. Terwilliger, N.B., Terwilliger, R.C., Applestein, M., Bonaventura, C., Bonaventura, J.: Subunit structure and oxygen binding by hemocyanin of the isopodLigia exotica. Biochemistry18, 102–108 (1979)Google Scholar
  36. Vranckx, R., Durliat, M.: Analyse immunologique des protéines de l'hemolymphe d'Astacus leptodactylus pendant la prémue. C.R. Acad. Sci. Paris, Sér. D282, 1305–1308 (1976)Google Scholar
  37. Waxman, L.: The structure of arthropod and mollusc hemocyanin. J. Biol. Chem.250, 3796–3806 (1975)Google Scholar
  38. Wibo, M.: Recherches sur les hémocyanines des arthropodes: constantes de sédimentation et aspects morphologiques. Thesis, Université Catholique de Louvain (1966)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. Markl
    • 1
  • A. Hofer
    • 1
  • G. Bauer
    • 1
  • A. Markl
    • 1
  • B. Kempter
    • 1
  • M. Brenzinger
    • 1
  • B. Linzen
    • 1
  1. 1.Zoologisches Institut der Universität MünchenMünchen 2Germany

Personalised recommendations