Acta Neuropathologica

, Volume 9, Issue 2, pp 99–126 | Cite as

Electron microscopic studies on ordinary and hyperacute experimental allergic encephalomyelitis

  • Peter Lampert
Review Articles


Public Health Microscopic Study Electron Microscopic Study Encephalomyelitis Experimental Allergic Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleu, F. P., R. Katzman, andR. D. Terry: Fine structure and electrolyte analyses of cerebral edema induced by alkyl tin intoxication. J. Neuropath. exp. Neurol.22, 403–413 (1963).Google Scholar
  2. Appel, S. H., andM. B. Bornstein: The application of tissue culture to the study of experimental allergic encephalomyelitis. II. Serum factors responsible for demyelination. J. exp. Med.119, 303–312 (1964).Google Scholar
  3. Ashton, N., andJ. G. Cunha-Vaz: Effect of histamine on the permeability of the ocular vessels. Arch. Ophthal.73, 211–223 (1965).Google Scholar
  4. Astrøm, K. E., andB. H. Waksman: The passive transfer of experimental allergic encephalomyelitis and neuritis with living lymphnode cells. J. Path. Bact.83, 89–106 (1962).Google Scholar
  5. Barlow, C. F.: A study of abnormal blood-brain permeability in experimental allergic encephalomyelitis. J. Neuropath. exp. Neurol.15, 196–207 (1956).Google Scholar
  6. Berg, O., andB. Kallen: Studies of experimental allergic encephalomyelitis and multiple sclerosis with the aid of glia cell culture. Acta neurol. scand.41, Suppl. 13, 625–628 (1965).Google Scholar
  7. Blümcke, S., H. R. Niedorf, andJ. Rode: Axoplasmic alterations in the proximal and distal stumps of transected nerves. Acta neuropath. (Berl.)7, 44–61 (1966).Google Scholar
  8. Bornstein, M. B., andS. H. Appel: The application of tissue culture to the study of experimental allergic encephalomyelitis. I. Patterns of demyelination. J. Neuropath. exp. Neurol.20, 141–157 (1961).Google Scholar
  9. Brightman, M. W.: The distribution within the brain of ferritin injected into the cerebrospinal fluid compartments. Amer. J. Anat.117, 193–220 (1965).Google Scholar
  10. Bubis, J. J., andS. A. Luse: An electron microscopic study of experimental allergic encephalomyelitis in the rat. Amer. J. Path.44, 299–317 (1964).Google Scholar
  11. Bunge, M. B., R. P. Bunge, andG. D. Pappas: Electron microscopic demonstration of connection between glia and myelin sheaths in the developing mamalian nervous system. J. Cell Biol.12, 448–453 (1962).Google Scholar
  12. —— andH. Ris: Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J. biophys. biochem. Cytol.10, 67–94 (1961).Google Scholar
  13. ———: Electron microscopic study of demyelination in an experimentally induced lesion in adult cat spinal cord. J. biophys. biochem. Cytol.7, 685–696 (1960).Google Scholar
  14. Condie, R. M., andR. A. Good: Ultrastructural changes of central nerve fibers in experimental allergic encephalomyelitis. Anat. Rec.127, 404–405 (1957).Google Scholar
  15. Cotran, R. S.: The delayed and prolonged vascular leakage in inflammation. II. An electron microscopic study of the vascular response after thermal injury. Amer. J. Path.46, 589–620 (1965).Google Scholar
  16. Estable-Puig, J. F., W. C. Bauer, andJ. M. Blumberg: Paraphenylenediamine staining of somium-fixed plastic embedded tissue for light and phase microscopy. J. Neuropath. exp. Neurol.24, 531–535 (1965).Google Scholar
  17. Feldman, J. P., andJ. S. Najarian: Dynamics and quantitative analysis of passively transferred tuberculin hypersensitivity. J. Immunol.91, 306–312 (1963).Google Scholar
  18. Fernando, N. V. P., andH. Z. Movat: Allergic inflammation. II. Identification of antigen antibody complexes with the electron microscope during the early phase of allergic inflammation. Amer. J. Path.43, 381–390 (1963).Google Scholar
  19. Ferraro, A., andL. Roizin: Neuropathologic variations in experimental allergic encephalomyelitis (haemorrhagic encephalomyelitis, perivenous encephalomyelitis, diffuse encephalomyelitis, patchy gliosis). J. Neuropath. exp. Neurol.13, 60–89 (1954).Google Scholar
  20. Field, E. J., andC. S. Raine: Experimental allergic encephalomyelitis. An electron microscopic study. Amer. J. Path.49, 537–553 (1966).Google Scholar
  21. —, andE. A. Caspary: Specificity of human brain and nerve antibody as shown by immunofluorescence microscopy. Brit. J. exp. Path.44, 631–634 (1963).Google Scholar
  22. Finean, J. B., andP. F. Millington: Effects of ionic strength of immersion medium on the structure of peripheral nerve myelin. J. biophys. biochem. Cytol.3, 89–95 (1957).Google Scholar
  23. Gonatas, N. K., S. Levine, andR. Shoulson Ultrastructure of inflammation with edema in the rat brain. Ann. N. Y. Acad. Sci.122, 6–14 (1965).Google Scholar
  24. ———: Phagocytosis and regeneration of myelin in an experimental leukoencephalopathy. Amer. J. Path.44, 563–583 (1964).Google Scholar
  25. Harris, T. N., K. Hummeler, andS. Harris: Electron microscopic observations on antibody-producing lymphnode cells. J. exp. Med.123, 161–171 (1966).Google Scholar
  26. Hirano, A., H. M. Zimmerman, andS. Levine: The fine structure of cerebral fluid accumulation. IX. Edema following silver nitrate implantation. Amer. J. Path.47, 537–548 (1965).Google Scholar
  27. Honjin, R., T. Nakamura, andM. Imura: Electron microscopy of peripheral nerves. III. On the axoplasmic changes during Wallerian degeneration. Okajimas Folia anat. jap.33, 131–155 (1959).Google Scholar
  28. Hummeler, K., T. N. Harris, N. Tomassini, M. Hechtel, andM. B. Farber: Electron microscopic observations on antibody-producing cells in lymph and blood. J. exp. Med.124, 255–262 (1966).Google Scholar
  29. Huntington, H. W., andR. D. Terry: The origin of the reactive cells in cerebral stab wounds. J. Neuropath. exp. Neurol.25, 646–653 (1966).Google Scholar
  30. Klatzo, I., andJ. Miquel: Observations on pinocytosis in nervous tissue. J. Neuropath. exp. Neurol.19, 475–487 (1960).Google Scholar
  31. Koenigsmark, B. W., andL. Sidman: Origin of brain macrophages in the mouse. J. Neuropath. exp. Neurol.22, 643–676 (1963).Google Scholar
  32. Koprowski, H., andM. V. Fernandes: Autosensitization reaction in vitro. Contactual agglutination of sensitized lymph node cells in brain tissue culture accompanied by destruction of glial elements. J. exp. Med.116, 467–476 (1962).Google Scholar
  33. Kosunen, T. U., B. H. Waksman, andI. K. Samuelson: Radioautographic study of cellular mechanism in delayed hypersensitivity. II. Experimental allergic encephalomyelitis. J. Neuropath. exp. Neurol.22, 367–380 (1963).Google Scholar
  34. Laatsch, R. H., M. W. Kies, S. Gordon, andE. C. Alvord: The encephalomyelitic activity of myelin isolated by ultracentrifugation. J. exp. Med.115, 777–788 (1962).Google Scholar
  35. Lampert, P.: A comparative electron microscopic study of reactive, degenerating, regenerating and dystrophic axons. J. Neuropath. exp. Neurol.26, 345 (1967).Google Scholar
  36. —: Demyelination and remyelination in experimental allergic encephalomyelitis. Further electron microscopic observations. J. Neuropath. exp. Neurol.24, 371–384 (1965).Google Scholar
  37. —, andS. Carpenter: Electron microscopic studies on the vascular permeability and the mechanism of demyelination in experimental allergic encephalomyelitis. J. Neuropath. exp. Neurol.24, 11–24 (1965).Google Scholar
  38. —, andM. Cressman: Fine structural changes of myelin sheaths after axonal degeneration in the spinal cord of rats. Amer. J. Path.49, 1139 (1966).Google Scholar
  39. —, andK. Earle: Cerebral edema after Laser radiation. An electron microscopic study. J. Neuropath. exp. Neurol.25, 531–541 (1966).Google Scholar
  40. —, andA. Pentschew: Lead encephalopathy in suckling rats. An electron microscopic study. In: Workshop on cerebral edema, Eds.F. Seitelberger andI. Klatzo. Berlin, Heidelberg, New York: Springer 1967.Google Scholar
  41. Levine, S., andE. J. Wenk: Studies on the mechanism of altered susceptibility to experimental allergic encephalomyelitis. Amer. J. Path.39, 413–441 (1961).Google Scholar
  42. ——: A hyperacute form of allergic encephalomyelitis. Amer. J. Path.47, 61–88 (1965).Google Scholar
  43. —, andH. M. Zimmerman: Hyperacute allergic encephalomyelitis. Electron microscopic observations. Amer. J. Path.47, 209–213 (1965).Google Scholar
  44. Luft, J. M.: Improvement in epoxy resin embedding methods. J. biophys. biochem. Cytol.9, 409–414 (1961).Google Scholar
  45. Luse, S. A.: The formation of myelin in the central nervous system of mice and rats, as studied with the electron microscope. J. biophys. biochem. Cytol.2, 777–783 (1956).Google Scholar
  46. —, andD. B. McDougal: Electron microscopic observations on allergic encephalomyelitis in the rabbit. J. exp. Med.112, 735–742 (1960).Google Scholar
  47. Majno, G., andG. E. Palade: Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability. An electron microscopic study. J. biophys. biochem Cytol.11, 571–605 (1961).Google Scholar
  48. Marchesi, V. T.: The site of leucocyte emigration during inflammation. Quart. J. exp. Physiol.41, 115–118 (1961).Google Scholar
  49. Movat, H. Z., andN. V. P. Fernando: Allergic inflammation. I. The earliest fine structural changes at the blood-tissue barrier during antigen-antibody interaction. Amer. J. Path.42, 41–59 (1963a).Google Scholar
  50. ——: Acute inflammation. The earliest fine structural changes at the blood tissue barrier. Lab. Invest.12, 895–910 (1963b).Google Scholar
  51. ——: The fine structure of the lymphoid tissue during antibody formation. Exp. molec. Path.4, 155–188 (1965).Google Scholar
  52. Najarian, J. S., andJ. D. Feldman: Passive transfer of transplantation immunity with tritiated lymphoid cells. J. exp. Med.115, 1083–1093 (1962).Google Scholar
  53. Nathaniel, E. J. H., andD. C. Pease: Degenerative changes in rat dorsal roots during Wallerian degeneration. J. Ultrastruct. Res.9, 511–532 (1963).Google Scholar
  54. Palay, S. L., S. M. McGee Russell, S. Gordon, andM. A. Grillo: Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J. Cell Biol.12, 385–419 (1962).Google Scholar
  55. Paterson, P. Y.: Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J. exp. Med.111, 119–136 (1960).Google Scholar
  56. Peters, A.: Further observations on the structure of myelin sheaths in the central nervous system. J. Cell Biol.20, 281–296 (1964).Google Scholar
  57. Pette, E., K. Mannweiler, O. Palacios, andB. Mutze: Phenomena of the cell membrane and their possible significance for the pathogenesis of so-called autoimmune diseases of the nervous system. Ann. N.Y. Acad. Sci.122, 417–428 (1965).Google Scholar
  58. Ratnof, O. D., andI. H. Lepow: Complement as a mediator of inflammation. Enhancement of vascular permeability by purified human C'1 esterase. J. exp. Med.118, 681–698 (1963).Google Scholar
  59. Rauch, H. C., andS. Raffel: Cellular activities in hypersensitive reactions. IV. Specifically reactive cells in delayed hypersensitivity: Allergic encephalomyelitis. J. Immunol.93, 960–964 (1964).Google Scholar
  60. Robertson, J. D.: Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions. J. biophys. biochem. Cytol.4, 349–364 (1958).Google Scholar
  61. Roessman, U., andR. L. Friede: Entry of labeled donor cells from the blood stream into the CNS. J. Neuropath. exp. Neurol.26, 144 (1967).Google Scholar
  62. Roizin, L., andL. C. Kolb: Considerations on the neuropathologic pleomorphism and histogenesis of the lesions of experimental allergic encephalomyelitis in non-human species. In: Allergic encephalomyelitis, pp. 5–57, Eds.M. W. Kies andE. C. Alvord. Springfield, Ill.: Ch. C. Thomas 1959.Google Scholar
  63. Rosenbluth, J.: Redundant myelin sheaths and other ultrastructural features of the toad cerebellum. J. Cell Biol.28, 73–93 (1966).Google Scholar
  64. Rowley, D. C.: Mast cell damage and vascular injury in the rat. An electron microscopic study of a reaction produced by Thorotrast. Brit. J. exp. Path.44, 284–290 (1963).Google Scholar
  65. Ross, L. L., M. B. Bornstein, andG. M. Lehrer: Electron microscopic observations of rat and mouse cerebellum in tissue culture. J. Cell Biol.14, 19–30 (1962).Google Scholar
  66. Schlote, W.: Die läsionsbedingten primär-retrograden Veränderungen der Axone zentraler Nervenfasern im elektronenmikroskopischen Bild. Acta neuropath. (Berl.)4, 138–157 (1964).Google Scholar
  67. Schroeder, J. M., u.W. Wechsler: Ödem und Nekrose in der grauen und weißen Substanz beim experimentellen Hirntrauma. Acta neuropath. (Berl.)5, 82–111 (1965).Google Scholar
  68. Seitelberger, F., u.K. Jellinger: Die pathologische Anatomie der allergischen Erkrankungen des Nervensystems. Wien. klin. Wschr.75, 475–481 (1963).Google Scholar
  69. Sherwin, A. L., G. Karpati, andR. Laviolette: The blood cerebrospinal fluid barrier to antibodies in experimental allergic encephalomyelitis and neuritis. Rev. canad. Biol.24, 277–283 (1965).Google Scholar
  70. —, andB. Rose: Myelin binding antibodies in experimental allergic encephalomyelitis. Science134, 1370–1372 (1961).Google Scholar
  71. Uriuhara, T., andH. Z. Movat: Allergic inflammation. IV. The vascular changes during the development and progression of the direct active and passive Arthus reactions. Lab. Invest.13, 1057–1079 (1964).Google Scholar
  72. Uzman, B. G.: The spiral configuration of myelin lamellae. J. Ultrastruct. Res.11, 208–212 (1964).Google Scholar
  73. Vial, J. D.: The early changes in the axoplasm during Wallerian degeneration. J. biophys. biochem. Cytol.4, 551–556 (1958).Google Scholar
  74. Vulpe, M., A. Hawkins andB. Rozdilski: Permeability of cerebral blood vessels in experimental allergic encephalomyelitis studied by radioactive iodinated bovine albumin. Neurology (Minneap.)10, 171–177 (1960).Google Scholar
  75. Waksman, B. H., andR. D. Adams: A histologic study of the early lesion in experimental allergic encephalomyelitis in the guinea pig and rabbit. Amer. J. Path.41, 135–162 (1962).Google Scholar
  76. Webster, H. de F.: Transient, focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration. J. Cell Biol.12, 361–384 (1962).Google Scholar
  77. Wechsler, W., u.H. Hager: Elektronenmikroskopische Untersuchung der Wallerschen Degeneration des peripheren Säugetiernerven. Beitr. path. Anat.126, 352–380 (1962).Google Scholar
  78. Wolf, A., E. A. Kabat, andA. E. Bezer: Pathology of acute disseminated encephalomyelitis produced experimentally in the Rhesus monkey and its resemblance to human demyelinating diseases. J. Neuropath. exp. Neurol.6, 333–357 (1947).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Peter Lampert
    • 1
    • 2
  1. 1.The Armed Forces Institute of PathologyWashington, D. C.USA
  2. 2.Veterans Administration Central Laboratory for Anatomic Pathology and ResearchAFIPWashington, D. C.

Personalised recommendations