Acta Neuropathologica

, Volume 38, Issue 1, pp 21–26 | Cite as

The pathology of experimental obstructive hydrocephalus

Electron microscopic observations
  • A. Torvik
  • A. E. Stenwig
Original Investigations


Obstructive hydrocephalus was produced in 10–14 day-old rabbits by injection of kaolin into the cisterna magna and the ependyma and subependymal tissue was studied by electron microscopy. Generally, the study confirmed recent light microscopic observations on similar models (Torvik et al., 1976). In contrast to most previous reports,it was found that the ependyma adapted remarkably well to ventricular dilatation. No true ependymal defects occurred even in extensive hydrocephalus except at the sites of the ventricular synechiae which sometimes ruptured. The specialized ependymal junctions remained intact but outside the junctions the intercellular clefts were widened, particularly along the lateral wall of the lateral ventricle. The density of the microvilli and cilia decreased, probably because of the increase in the surface area of the ependyma. Dense bundles of filaments developed in the ependymal cells of the hydrocephalic animals.

The extracellular space of the subependymal white matter appeared increased but there was no evidence of destruction of fibres or cells. Thus, the reduction of the cerebral mantle thickness was probably mainly caused by pressure atrophy.

Key words

Hydrocephalus Ependyma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, D. P., Wilson, J. A., Watson, G. W.: The spinal cord central canal: Response to experimental hydrocephalus and canal occlusion. J. Neurosurg.36, 416–424 (1972)Google Scholar
  2. Brightman, M. W.: The intracerebral movement of proteins injected into blood and cerebrospinal fluid in mice. Progr. Brain Res.23, 19–40 (1968)Google Scholar
  3. Brightman, M. W., Palay, S. L.: The fine structure of ependyma in the brain of the rat. J. Cell Biol.19, 415–439 (1963)Google Scholar
  4. Brightman, M. W., Reese, T. S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol.40, 648–677 (1969)Google Scholar
  5. Clark, R. D., Milhorat, T. H.: Experimental hydrocephalus. Part 3: Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J. Neurosurg.32, 400–413 (1970)Google Scholar
  6. De, S. N.: A study of the changes in the brain in internal hydrocephalus. J. Path. Bact.62, 197–208 (1950)Google Scholar
  7. Dohrman, G. J.: Cervical spinal-cord in experimental hydrocephalus. J. Neurosurg.37, 538–542 (1972)Google Scholar
  8. Eisenberg, H. M., McLennan, J. E., Welch, K.: Ventricular perfusion in cats with kaolin-induced hydrocephalus. J. Neurosurg.41, 20–28 (1974)Google Scholar
  9. Fleischhauer, K.: Ependyma and subependymal layer. In: Structure and function of the nervous system, Vol. VI (ed. G. Bourne). New York-London: Academic Press 1973Google Scholar
  10. Go, K. G., Stokroos, I., Blaauw, E. H., Zuiderveen, F., Molenaar, I.: Changes of the ventricular ependyma and choroid plexus in experimental hydrocephalus, as observed by scanning electron microscopy. Acta neuropath. (Berl.)34, 55–64 (1976)Google Scholar
  11. Gulley, R. L., Wood, R. L.: The fine structure of the neurons in the rat substantia nigra. Tissue and Cell3, 675–690 (1971)Google Scholar
  12. Hochwald, G. M., Boal, R. D., Marlin, A. E., Kumar, A. J.: Regional blood flow and water content of brain and spinal cord in acute and chronic experimental hydrocephalus. Develop. med. Child Neurol. Suppl.35, 42–50 (1975)Google Scholar
  13. Hochwald, G. M., Sahar, A., Sadik, A. R., Ransohoff, J.: Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus. Exp. Neurol.25, 190–199 (1969)Google Scholar
  14. Ogata, J., Hochwald, G. M., Cravioto, H., Ransohoff, J.: Light and electron microscopic studies of experimental hydrocephalus. Acta neuropath. (Berl.)21, 213–223 (1972)Google Scholar
  15. Page, R. P.: Scanning electron microscopy of the ventricular system in normal and hydrocephalic rabbits.Preliminary report and atlas. J. Neurosurg.42, 646–664 (1975)Google Scholar
  16. Pannese, E., Ferranini, E.: Nuclear pyknosis in neuroglia cells of normal mammals. Acta neuropaph. (Berl.)8, 309–319 (1967)Google Scholar
  17. Steensaas, L. J., Gilson, B. C.: Ependymal and subependymal cells of the caudato-pallial junction in the lateral ventricle of the neonatal rabbit. Cell Tissue Res.132, 297–322(1972)Google Scholar
  18. Tennyson, V. M., Pappas, G. D.: An electron microscope study of ependymal cells of the fetal, early postnatal and adult rabbit. Z. Zellforsch.56, 595–618 (1962)Google Scholar
  19. Torvik, A., Bhatia, R., Nyberg-Hansen, R.: The pathology of expermental obstructive hydrocephalus. Neuropath. appl. Neurobiol.2, 41–52 (1976)Google Scholar
  20. Weller, R. O., Wiśniewski, H., Shulman, K., Terry, R. D.: Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J. Neuropath. exp. Neurol.30, 613–626 (1971)Google Scholar
  21. Westergaard, E.: The lateral ventricles and the ventricular walls. Odense, Denmark: Andelsbogtrykkeriet 1970Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. Torvik
    • 1
    • 2
  • A. E. Stenwig
    • 1
    • 2
  1. 1.Laboratory of NeuropathologyUllevalOslo 1Norway
  2. 2.Department of PathologyThe Norwegian Radium HospitalOslo 3Norway

Personalised recommendations