Advertisement

Acta Neuropathologica

, Volume 42, Issue 2, pp 73–80 | Cite as

Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients. A quantitative study

  • M. J. Ball
Original Investigations

Summary

Topographic analysis was performed of the distribution of Alzheimer's neurofibrillary tangles and the granulovacuolar degeneration of Simchowicz in the hippocampal cortex of patients with Alzheimer's dementia and mentally normal aged controls. A semiautomated scanning stage microscope was linked potentiometrically to an XY pen recorder in order to plot cytoarchitectonic “scattergrams” from the sequentially screened hippocampal formations. The density of both lesions per cubic mm of pyramidal cortex was quantified by measuring the area of each of six “zones”, using a digitizer and programmable calculator.

In elderly normal brains as well as those of Alzheimer's disease, the statistically most representative ranking order of predilection forneurofibrillary tangles (in decreasing severity) was: entorhinal cortex > subiculum > H1 > end-plate > presubiculum > H2. Forgranulovacuolar degeneration the best rank order was: subiculum > H1 > H2 > end-plate > entorhinal cortex > presubiculum. The notable similarities of both such orders of predilection to the well-recognized “selective vulnerability” of certain hippocampal neurones in clinical conditions of hypoxia, ischemia and epilepsy suggest some common, focally accentuated cytotoxic mechanism may underlie all these regional predispositions.

Key words

Aging Dementia Neurofibrillary tangles Granulovacuolar degeneration Hippocampus Topography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, M. J.: Neurofibrillary tangles and the pathogenesis of dementia: A quantitative study. Neuropath. Appl. Neurobiol.2, 395–410 (1976)Google Scholar
  2. Ball, M. J.: Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia—a quantitative study. Acta neuropath. (Berl.)37, 111–118 (1977)Google Scholar
  3. Ball, M. J., Lo, P.: Granulovacuolar degeneration in the ageing brain and in dementia. J. Neuropath. exp. Neurol.36, 474–487 (1977)Google Scholar
  4. Bowen, D. M., Smith, C. B., White, P., Davison, A. N.: Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain99, 459–496 (1976)Google Scholar
  5. Brierley, J. B.: Cerebral hypoxia. In: Greenfield's Neuropathology, pp. 43–85 (eds. W. Blackwood and J. A. N. Corsellis). London: E. Arnold 1976Google Scholar
  6. Coceani, F., Gloor, P.: The distribution of the internal carotid circulation in the brain of the Macaque Monkey (Macaca mulatta). J. comp. Neurol.128, 419–430 (1966)Google Scholar
  7. Corsellis, J. A. N.: The limbic areas in Alzheimer's disease and in other conditions associated with dementia. In: Alzheimer's Disease: A Ciba Foundation Symposium, pp. 37–50 (eds. G. E. W. Wolstenholme and M. O'Connor). London: J. and A. Churchill 1970Google Scholar
  8. Corsellis, J. A. N.: Ageing and the dementias. In: Greenfield's Neuropathology, p. 813 (eds. W. Blackwood and J. A. N. Corsellis). London: E. Arnold 1976Google Scholar
  9. Corsellis, J. A. N., Meldrum, B. S.: Epilepsy. In: Greenfield's Neuropathology, pp 771–795 (eds. W. Blackwood and J. A. N. Corsellis). London: E. Arnold 1976Google Scholar
  10. Davies, P., Maloney, A. J. F.: Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet2, 1403 (1976)Google Scholar
  11. Dayan, A. D.: Quantitative histological studies on the aged human brain. II. Senile plaques and neurofibrillary tangles in senile dementia. Acta neuropath. (Berl.)16, 95–102 (1970)Google Scholar
  12. Drachman, D. A.: Memory and cognitive function in man: Does the cholinergic system have a specific role? Neurology27, 783–790 (1977)Google Scholar
  13. Gallagher, M., Kapp, B. S., Musty, R. E., Driscoll, P. A.: Memory function: evidence for a specific neurochemical system in the amygdala. Science198, 423–425 (1977)Google Scholar
  14. Goodman, L.: Alzheimer's disease: a clinicopathological analysis of 23 cases with a theory on pathogenesis. J. Nerv. Ment. Dis.118, 97–130 (1953)Google Scholar
  15. Herndon, R. M., Coyle, J. T.: Selective destruction of neurones by a transmitter agonist. Science198, 71–72 (1977)Google Scholar
  16. Hirano, A., Zimmerman, H. M.: Alzheimer's neurofibrillary changes: a topographic study. Arch. Neurol.7, 227–242 (1962)Google Scholar
  17. Hooper, W. M., Vogel, F. S.: The limbic system in Alzheimer's disease. Amer. J. Pathol.85, 1–19 (1976)Google Scholar
  18. Jamada, M., Mehraein, P.: Verteilungsmuster der senilen Veränderungen im Gehirn. Arch. Psychiat. Nervenkr.211, 308–324 (1968)Google Scholar
  19. Kim, S. U.: Demonstration of neurofibrillary degeneration induced by anoxia in spinal motor neurons in vitro. Experientia (Basel)27, 264–265 (1971)Google Scholar
  20. Liss, L., Couri, D., Young, E., Ebner, K., Socarras, L.: Facilitation of Alzheimer's dementia by exogenous factors. J. Neuropath. exp. Neurol.35, 372 (1976)Google Scholar
  21. McLardy, T.: Memory function in hippocampal gyri but not in hippocampi. Intern J. Neuroscience1, 113–118 (1970)Google Scholar
  22. Morel, F., Wildi, E.: Contributions à la connaissance des différentes altérations cérébrales du grand âge. Arch. Suisses Neurol. Psychiat.76, 174–223 (1955)Google Scholar
  23. Niklowitz, W. J.: Neurofibrillary changes after acute experimental lead poisoning. Neurology (Minneap.)25, 927–934 (1975)Google Scholar
  24. Nilges, R. G.: The arteries of the mammalian cornu Ammonis. J. comp. Neurol.80, 177–190 (1944)Google Scholar
  25. Perry, E. K., Perry, R. H., Blessed, G., Tomlinson, B. E.: Necropsy evidence of central cholinergic deficits in senile dementia. Lancet1, 189 (1977)Google Scholar
  26. Scharrer, E.: Vascularization and vulnerability of the cornu Ammonis in the opposum. Arch. Neurol. Psychiat.44, 483–506 (1940)Google Scholar
  27. Scheibel, M. E., Lindsay, R. D., Tomiyasu, U., Scheibel, A. B.: Progressive dendritic changes in the ageing human limbic system. Exp. Neurol.53, 420–430 (1976)Google Scholar
  28. Spielmeyer, W.: Zur Pathogenese örtlich elektiven Gehirnveränderungen. Z. ges. Neurol. Psychiat.99, 756–776 (1925)Google Scholar
  29. Stokes, M. I., Trickey, R. J.: Screening for neurofibrillary tangles and argyrophilic plaques with Congo red staining and polarised light. J. Clin. Path.26, 241 (1973)Google Scholar
  30. Tomlinson, B. E., Blessed, G., Roth, M.: Observations on the brains of non-demented old people. J. Neurol. Sci.7, 331–356 (1968)Google Scholar
  31. Tomlinson, B. E., Blessed, G., Roth, M.: Observations on the brains of demented old people. J. Neurol. Sci.11, 205–242 (1970)Google Scholar
  32. Tomlinson, B. E., Kitchener, D.: Granulovacuolar degeneration of hippocampal pyramidal cells. J. Path.106, 165–185 (1972)Google Scholar
  33. Vogt, C., Vogt, O.: Sitz und Wesen der Krankheiten im Lichte der topostischen Hirnforschung und der Variierens der Tiere. J. Psychol. Neurol. (Lpz.)47, 237–457 (1937)Google Scholar
  34. Woodard, J. S.: Clinicopathological significance of granulovacuolar degeneration in Alzheimer's disease. J. Neuropath. exp. Neurol.21, 85–91 (1962)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. J. Ball
    • 1
  1. 1.Depts. of Pathology and Clinical Neurological SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations