Advertisement

Archives of Microbiology

, Volume 132, Issue 1, pp 1–9 | Cite as

Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium

  • Beat A. Huser
  • Karl Wuhrmann
  • Alexander J. B. Zehnder
Original Papers

Abstract

A new genus of methanogenic bacteria is described, which was isolated from a mesophilic sewage digester. It is most probably the filamentous bacterium, earlier referred to asMethanobacterium soehngenii, “fat rod” or “acetate organism”. The single non-motile, non-sporeforming cells are rod-shaped (0.8×2 μm) and are normally combined end to end in long filaments, surrounded by a sheath-like structure. The filaments form characteristic bundles.Methanothrix soehngenii decarboxylates acetate, yielding methane and carbon dioxide. Other methanogenic substrates (H2−CO2, formate, methanol, methylamines) are not used for growth or methane formation. Formate is split into hydrogen and carbon dioxide. The temperature optimum for growth and methane formation is 37°C and the optimal pH range is 7.4–7.8. Sulfide and ammonia serve as sulfur and nitrogen source respectively. Oxygen completely inhibits growth and methane formation, but the bacteria do not loose their viability when exposed to high oxygen concentrations. 100 mg/l vancomycin showed no inhibition of growth and methanogenesis. No growth and methane formation was observed in the presence of: 2-bromoethanesulfonic acid, viologen dyes, chloroform, and KCN. The bacterium has a growth yield on acetate of 1.1–1.4 g biomass per mol acetate. The apparent “K S ” of the acetate conversion system to methane and carbon dioxide is 0.7 mmol/l. The DNA base composition is 51.9 mol% guanine plus cytosine. The nameMethanothrix is proposed for this new genus of filamentous methane bacterium. The type species,Methanothrix soehngenii sp. nov., is named in honor of N. L. Söhngen.

Key words

Methane bacterium Acetate decarboxylation Methanothirx soehngenii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791Google Scholar
  2. Balch WE, Wolfe RS (1979) Specifity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid) J Bacteriol 137:256–263Google Scholar
  3. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296Google Scholar
  4. Baresi L, Wolfe RS (1981) Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M methylreductase in acetategrownMethanosarcina. Appl Environ Microbiol 41:388–391Google Scholar
  5. Barker HA (1936) Studies upon the methane-producing bacteria. Arch Mikrobiol 7:420–438Google Scholar
  6. Belyaev SS, Finkel'shtein ZI, Ivanov MV (1975) Intensity of bacterial methane formation in ooze deposits of certain lakes. Microbiology 44:272–275Google Scholar
  7. Boone DR, Bryant MP (1980) Propionate-degrading bacterium,Synthrophobacter wolinii, sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632Google Scholar
  8. Bryant MP (1972) Commentary on the Hungate technique, for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328Google Scholar
  9. Buswell AM, Hatfield WD (1936) Anaerobic fermentations. Ill State Wat Survey Bull 32:59–65Google Scholar
  10. Cappenberg TE (1976) Methanogenesis in the bottom deposits of a small stratified lake, in HG Schlegel, G Gottschalk, N Pfennig (eds) Microbial formation and utilization of gases (H2, CH4, CO). Verlag Goltze KG. Göttingen, pp 125–134Google Scholar
  11. Cappenberg TE, Prins H (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh water lake. III. Experiments with14C-labelled substrates. Antonie van Leeuwenhoek J Microbiol Serol 40:457–469Google Scholar
  12. Colvin JR, Sowden LC, van den Berg L (1979) The ultrastructure of the major species of an enriched methanogenic culture utilizing acetic acid. Can J Microbiol 25:826–832Google Scholar
  13. Ferry JG, Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107:33–40Google Scholar
  14. Godsy EM (1980) Isolation ofMethanobacterium bryantii from a deep aquifier by using a novel broth-antibiotic disc method. Appl Environ Microbiol 39:1074–1075Google Scholar
  15. Groenewege J (1920) Bakteriologische Untersuchungen über biologische Reinigung. Med Burg Geneesk Dienst 1:67–125Google Scholar
  16. Gunsalus RP (1977) The methyl-coenzyme M reductase system inMethanobacterium thermoautotrophicum. Thesis, University of Illinois, Urbana-ChampaignGoogle Scholar
  17. Gusalus RP, Wolfe RS (1980) Methyl coenzyme M reductase fromMethanobacterium thermoautotrophicum. J Biol Chem 255:1891–1895Google Scholar
  18. Hammes WP, Winter J, Kandler O (1979) The sensitivity of the pseudomurein-containing genusMethanobacterium to inhibitors of murein synthesis. Arch Microbiol 123:275–279Google Scholar
  19. Healy JB, Young LY, Reinhard M (1980) Methanogenic decomposition of ferulic acid, a model lignin derivative. Appl Environ Microbiol 39:436–444Google Scholar
  20. Hilpert R, Winter J, Hammes WP, Kandler O (1981) Sensitivity of archaebacteria to autibiotics. Zbl Bakt 1. Abt Orig C 2:11–21Google Scholar
  21. Holdemann LV, Moore WEC (ed) (1972) Anaerobe laboratory manual. Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  22. Hoppe-Seyler F (1876) Über die Processe der Gährungen und ihre Beziehung zum Leben der Organismen. Pflügers Arch ges Physiol 12:1–17Google Scholar
  23. Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49Google Scholar
  24. Huser BA (1981) Methanbildung aus Acetat: Isolierung eines neuen Archaebakteriums. Thesis Nr. 6750, Swiss Federal Institute of Technology, ZürichGoogle Scholar
  25. Hutten TJ, de Jong MH, Peeters BPH, van der Drift Ch, Vogels GD (1981) Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts ofMethanosarcina barkeri. J Bacteriol 145:27–34Google Scholar
  26. Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using C14 tracers. J Wat Poll Contr Fed 37:178–192Google Scholar
  27. Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7Google Scholar
  28. Khan AW, Mes-Hartree M (1981) Metabolism of acetate and hydrogen by a mixed population of anaerobes capable of converting cellulose to methane. J Appl Bacteriol 50:283–288Google Scholar
  29. Lawrence AW, McCarty PL (1969) Kinetics of methane fermentation in anaerobic treatment. J Wat Poll Cont Fed 41:1–17Google Scholar
  30. Mackie RI, Bryant MP (1981) Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl Environ Microbiol 41:1363–1373Google Scholar
  31. Mah RA, Hungate RE, Ohwaki K (1976) Acetate, a key intermediate in methanogenesis, in: HG Schlegel, J Barnea (eds) Microbial, energy conversion. E. Goltze KG, Göttingen, pp 97–106Google Scholar
  32. Mah RA, Smith MR, Baresi L (1978) Studies on an acetate-fermenting strain ofMethanosarcina. Appl. Environ Microbiol 35:1174–1184Google Scholar
  33. McBride BC, Wolfe RS (1971) A new coenzyme of methyl-transfer, coenzyme M. Biochem 10:2317–2324Google Scholar
  34. McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic, association with methanogens. Arch Microbiol 122:129–135Google Scholar
  35. McInerney MJ, Mackie RI, Bryant MP (1981) Syntrophic association of a butyrate-degrading bacterium andMethanosarcina enriched from bovine rumen fluid. Appl Environ Microbiol 41:826–828Google Scholar
  36. Mountfort DO, Asher RA (1978) Changes in proportions of acetate and carbon dioxide used as methane precursors during the anaerobic digestion of bovine waste. Appl Environ Microbiol 35:648–654Google Scholar
  37. Mylroie RL, Hungate RE (1954) Experiments on the methane bacteria in sludge. Can J Microbiol 1:55–64Google Scholar
  38. Pretorius WA (1972) The effect of formate on the growth of acetate utilizing methanogenic bacteria. Wat Res 6:1213–1217Google Scholar
  39. Roberton AM, Wolfe RS (1970) Adenosine triphosphate pools inMethanobacterium. J Bacteriol 102:43–51Google Scholar
  40. Schnellen CGTP (1947) Onderzoekingen over de Methaangisting. Proefschrift, Technische Hoogeschool, DelftGoogle Scholar
  41. Smit J (1930) Die Gärungssarcinen. Eine Monographie. Pflanzenforschung 14:1–59Google Scholar
  42. Smith PH (1966) The microbial ecology of sludge methanogenesis. Devel Ind Microbiol 7:156–161Google Scholar
  43. Smith PH, Mah RA (1966) Kinetics of acetate metabolism during sludge digestion. Appl Microbiol 14:368–371Google Scholar
  44. Smith MR, Mah RA (1978) Growth and methanogenesis byMethanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879Google Scholar
  45. Smith MR, Zinder SH, Mah RA (1980) Microbial methanogenesis from acetate. Process Biochem 15:34–39Google Scholar
  46. Söhngen NL (1906) Het ontstaan en verdwijnen van waterstof en methaan onder den invloed van het organische leven. Proefschrift. Technische Hoogeschool, DelftGoogle Scholar
  47. Stackebrandt E, Kandler O (1979) Taxonomy of the genusCellulomonas based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology, and proposal of seven neotype strains. Int J Syst Bacteriol 29:273–282Google Scholar
  48. Stackebrandt E, Seewaldt E, Ludwig W, Schleifer K-H, Huser BA (1982) Classification ofMethanothrix soehngenii, a new methanogenic archaebacterium. Zbl Bakt Hyg 1. Abt Orig C, in pressGoogle Scholar
  49. Takai Y (1970) The mechanism of methane fermentation in flooded paddy soil. Soil Sci Plant Nutr 16:238–244Google Scholar
  50. Takai Y, Koyama T, Kamura T (1963) Microbial metabolism in reduction process of paddy soils. Soil Sci and Plant Nutr 9:1–5Google Scholar
  51. Takamiya A (1942) Über die Formicodehydrase vonEscherichia coli. Acta Phytochim 13:1–9Google Scholar
  52. Toerien DF, Thiel PG, Pretorius WA (1971) Substrate flow in anaerobic digestion. Adv Wat Poll Res 11:II 29/1–29/7Google Scholar
  53. van den Berg L, Patel GB, Clark DS, Lentz CP (1976) Factors affecting rate of methane formation from acetic acid by enriched methanogenic cultures. Can J Microbiol 22:1312–1319Google Scholar
  54. Weimer PJ, Zeikus JG (1978) Acetate metabolism inMethanosarcina barkeri. Arch Microbiol 119:175–182Google Scholar
  55. Winfrey MR, Zeikus JG (1979) Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appl Environ Microbiol 37:244–253Google Scholar
  56. Woese CR (1981) Archaebacteria. Scient Am 244:94–106Google Scholar
  57. Wolfe RS (1971) Microbial formation of methane, in: AH Rose, JF Wilkinson (eds) Advances in microbiological physiology. Academic Press Inc., New York, vol 6, pp 107–146Google Scholar
  58. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts J Biol Chem 238:2882–2886Google Scholar
  59. Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432Google Scholar
  60. Zehnder AJB, Huser B, Brock TD (1979) Measuring radioactive methane with the liquid scintillation counter. Appl Environ Microbiol 37:897–899Google Scholar
  61. Zehnder AJB, Huser BA, Brock, TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogenoxidizing methane bacterium. Arch Microbiol 124:1–11Google Scholar
  62. Zeikus JG, Weimer PJ, Nelson DR, Daniels L (1975) Bacterial methanogenesis: Acetate as a methane precursor in pure culture. Arch Microbiol 104:129–134Google Scholar
  63. Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain ofMethanosarcina unable to use H2−CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Beat A. Huser
    • 1
    • 2
  • Karl Wuhrmann
    • 1
    • 2
  • Alexander J. B. Zehnder
    • 1
    • 2
  1. 1.Swiss Federal Institute of TechnologyZürichSwitzerland
  2. 2.Federal Institute for Water Resources and Water Pollution ControlDübendorfSwitzerland

Personalised recommendations