Advertisement

Surveys in Geophysics

, Volume 14, Issue 4–5, pp 433–447 | Cite as

Present state and future developments of the European geoid

  • Heiner Denker
  • Wolfgang Torge
Article

Abstract

Regional geoid resp. quasigeoid determinations are nowadays required with an accuracy of ±1 to 10 cm over distances from 100 to some 1000 km in order to meet the demands of geodesy, geophysics, oceanography and engineering. Especially the combination of GPS heighting with classical leveling is one of the primary drivers for precise geoid computations. As a consequence, the IAG International Geoid Commission recognized at its meeting in Milano, 1990, that there is an urgent need for a new European geoid computation. This solution should be significantly improved in spatial resolution and accuracy as compared to presently available models. This led to the decision to form a Subcommission for the Geoid in Europe, and the Institut für Erdmessung (IfE) was asked to serve as a computing center in this project.

In the first part of this paper early geoid/quasigeoid computations for the area of Europe as well as more recent results obtained at IfE are summarized. The latter solutions include a gravimetric and an astrogravimetric quasigeoid, which have a spatial resolution of about 20 km and a relative accuracy of some dm. Then the possibilities for an improved European quasigeoid calculation are outlined, considering the availability of new and better global and regional data sets. An overview is given on the procedures currently under study at IfE and on the work performed at IfE since 1990. This work includes the collection and screening of new point gravity and terrain data, some investigations on the use of topographic information available at present, and the calculation of a preliminary quasigeoid solution for central, northern and western Europe including a GPS/leveling control. The paper closes with a survey on future activities at IfE within the European geoid project.

Keywords

Geophysics Classical Leveling Relative Accuracy Primary Driver Topographic Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bašić, T.: 1989, ‘Untersuchungen zur regionalen Geoidbestimmung mit “dm” Genauigkeit’, Wiss. Arb. d. Fachr. Verm.wesen, Univ. Hannover, Nr. 157, Hannover.Google Scholar
  2. Bašić, T., Denker, H,. Knudsen, P., Solheim, D., and Torge, W.: 1989, ‘A New Geopotential Model Tailored to Gravity Data in Europe’, in: Rummel, R., and Hipkin, R. G. (eds.),IAG Symposia Proceed., Vol. 103, Gravity, Gradiometry and Gravimetry, pp. 109–118, Springer Verlag, Berlin -Heidelberg - New York.Google Scholar
  3. Bomford, G.: 1972, ‘The Astrogeodetic Geoid in Europe and Connected Areas 1971’, Travaux de l'AIG 24, pp. 357–370, Paris.Google Scholar
  4. Brennecke, J., Lelgemann, D., Reinhart, E., Torge, W., Weber, G., and Wenzel, H.-G.: 1983, ‘A European Astro-Gravimetric Geoid’, Deutsche Geod. Komm., Reihe B, Nr. 269, Frankfurt a.M.Google Scholar
  5. Denker, H., Lelgemann, D., Torge, W., Weber, G., and Wenzel, H.-G.: 1986, ‘Strategies and Requirements for a New European Geoid Determination’,Proceed. Intern. Symp. on the Definition of the Geoid, Vol. 1, pp. 207–222, Ist. Geogr. Mil. Ital., Florence.Google Scholar
  6. Denker, H.: 1988, ‘Hochauflösende regionale Schwerefeldbestimmung mit gravimetrischen und topographischen Daten’, Wiss. Arbeiten d. Fachr. Verm.wesen, Univ. Hannover, Nr. 156, Hannover.Google Scholar
  7. Denker, H.: 1989, ‘A New Gravimetric Quasigeoid for the Federal Republic of Germany’, Deutsche Geod. Komm., Reihe B, Nr. 291, München.Google Scholar
  8. Denker, H.: 1990, ‘GPS Control of the 1989 Gravimetric Quasigeoid for the Federal Republic of Germany’, in: Rapp, R. H., and Sansó, F. (eds.),IAG Symposia Proceed., Vol. 106, Determination of the Geoid - Present and Future, pp. 152–159, Springer Verlag, New York - Berlin - Heidelberg.Google Scholar
  9. Forsberg, R.: 1990, ‘NKG Nordic Standard Geoid 1989’,Procoeed. 11th General Meeting of the Nordic Geodetic Commission, 7–11. May 1990, pp. 75–89, Copenhagen.Google Scholar
  10. Forsberg, R., and Tscherning, C. C.: 1981, ‘The Use of Height Data in Gravity Field Approximation’,J. Geophys. Res. 86, pp. 7843–7854.Google Scholar
  11. Levallois, J. J., and Monge, H.: 1978, ‘Le Géoide Européen, Version 1978’,Proceed. Intern. Symp. on the Geoid in Europe and Mediterranean Area, Ancona 1978, pp. 153–164, Soc. Italiana di Fotogrammetria e Topografica, Ancona.Google Scholar
  12. Marsh, J. G., Lerch, F. J., Putney, B. H., Christodoulidis, D. C., Felsentreger, T. L., Sanchez, B. V., Smith, D. E., Klosko, S. M., Martin, T. V., Pavlis, E. C., Robbins, J. W., Williamson, R. G., Colombo, O. L., Chandler, N. L., Rachlin, K. E., Patel, G. B., Bhati, S. and Chinn, D. S.: 1987, ‘An Improved Model of the Earth's Gravitational Field: GEM-T1’, NASA Technical Memorandum 4019, Washington D.C.Google Scholar
  13. Marsh, J. G., Lerch, F. J., Putney, B. H., Felsentreger, T. L., Sanchez, B. V., Klosko, S. M., Patel, G. B., Robbins, J. W., Williamson, R. G., Engelis, T. E., Eddy, W. F., Chandler, N. L., Chinn, D. S., Kapoor, S., Rachlin, K. E., Braatz, L. E., and Pavlis, E. C.: 1989, ‘The GEM-T2 Gravitational Model’, NASA Technical Memorandum 100746, Greenbelt/Maryland.Google Scholar
  14. Marti, U.: 1990, ‘ALGESTAR - Satellitengestützte Geoidbestimmung in der Schweiz mit GPS’, Geodätisch-geophysikalische Arbeiten in der Schweiz, Schweiz. Geod. Komm., 41. Band, Zürich.Google Scholar
  15. Rapp, R. H. and Cruz, J. Y.: 1986, ‘Spherical Harmonic Expansions of the Earth's Gravitational Potential to Degree 360 Using 30′ Mean Anomalies’, Dept. of Geod. Science and Surveying, The Ohio State Univ., Rep. No. 376, Columbus, Ohio.Google Scholar
  16. Rapp, R. H. and Pavlis, N. K.: 1990, ‘The Development of Geopotential Coefficient Models to Spherical Harmonic Degree 360’,J. Geophys. Res. 95, pp. 21885–21911.Google Scholar
  17. Seeber, G.: 1988, ‘Present State of the DÖNAV Campaign’, in: E. Groten and R. Strauß (eds.),Lecture Notes in Earth Sciences 19, pp. 201–209 (Proceed. Intern. GPS-Workshop, Darmstadt 1988), Springer-Verlag, Berlin.Google Scholar
  18. Tanni, L.: 1949, ‘The Regional Rise of the Geoid in Central Europe’, Publ. Isost. Inst. of IAG, No. 22, Helsinki.Google Scholar
  19. Tscherning, C.C. and Rapp, R. H.: 1974, ‘Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models’, Dept. of Geod. Science, The Ohio State Univ., Rep. No. 208, Columbus, Ohio.Google Scholar
  20. Torge, W.: 1987, ‘Accuracy and Stability of the Height Reference Surface’, in:Determination of Heights and Height Changes (H. Pelzer, W. Niemeier (eds.), pp. 69–82, F. Dümmler Verlag, Bonn.Google Scholar
  21. Torge, W., Weber, G. and Wenzel, H.-G.: 1982, ‘Computation of a High Resolution European Geoid (EGG1)’,Proceed. 2nd Intern. Symp. on the Geoid in Europe and Mediterranean Area, Rome 1982, pp. 437–460, Ist. Geogr. Mil. Ital., Florence.Google Scholar
  22. Torge, W., Bašić, T., Denker, H., Doliff, J. and Wenzel, H.-G.: 1989, ‘Long Range Geoid Control Through the European GPS Traverse’, Deutsche Geod. Komm., Reihe B, Nr. 290, München.Google Scholar
  23. Torge, W. and Denker, H.: 1990, ‘Possible Improvements of the Existing European Geoid’, in: Rapp, R. H. and Sansó, F. (eds.), IAGSymposia Proceed., Vol. 106, Determination of the Geoid -Present and Future, pp. 287–295, Springer Verlag, New York - Berlin - Heidelberg.Google Scholar
  24. Wenzel, H.-G.: 1985, ‘Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde’, Wiss. Arb. d. Fachr. Verm.wesen, Univ. Hannover, Nr. 137, Hannover.Google Scholar
  25. Wirth, B.: 1990, ‘Höhensysteme, Schwerepotentiale und Niveauflächen: Systematische Untersuchungen zur zukünftigen GPS-gestützten Höhenbestimmung in der Schweiz’,Geodätisch-geophysikalische Arbeiten in der Schweiz, Schweiz. Geod. Komm., 42. Band, Zürich.Google Scholar
  26. Wolf, H.: 1949, ‘Die angenäherte Bestimmung des Geoids mittels astronomischen Nivellements im Bereich des Zentraleuropäischen Netzes’,Veröff. Inst. f. Erdmessung, Heft 6, Teil I, pp. 57–71, Bamberg.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Heiner Denker
    • 1
  • Wolfgang Torge
    • 1
  1. 1.Institut für ErdmessungUniversity of HannoverHannover 1Germany

Personalised recommendations