Advertisement

Acta Neuropathologica

, Volume 48, Issue 3, pp 231–234 | Cite as

Iron-induced atypical meningioma cells?

  • W. Müller
  • H. G. Dahmen
Short Original Communications

Summary

Polymorphous tumor cells with bizarre giant nuclei are characteristic of the so-called atypical meningioma. Some of these cells are iron-positive. Meningioma cells apparently are able to store iron excessively. It is discussed whether an extremely high intracellular iron uptake is responsible for atypical meningioma growth. Derangement of mitotic spindles may lead to polyploid chromosome sets and thereby to giant nuclei. This seems likely because induction of tumor growth after iron injection has been described. Spodographic examinations showed that even histologically inconspicuous tumor cells contain finegrained iron. Application of the Prussian-blue reaction to spodograms reveals distinctly higher iron contents than common paraffin sections had proved.

Key words

Atypical meningioma Cellular polymorphism Iron metabolism Spodographic examination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alksne, J. F., Lovings, E. T.: The role of the arachnoid villus in the removal of red blood cells from the subarachnoid space. An electron microscope study in the dog. J. Neurosurg.36, 192–200 (1972a)Google Scholar
  2. Alksne, J. F., Lovings, E. T.: Functional ultrastructure of the arachnoid villus. Arch. Neurol.27, 371–377 (1972b)Google Scholar
  3. Ellington, E., Margolis, G.: Block of arachnoid villus by subarachnoid hemorrhage. J. Neurosurg.30, 651–657 (1969)Google Scholar
  4. Elman, R.: Spinal arachnoid granulations with especial reference to the cerebrospinal fluid. Bull. Johns Hopkins Hosp.34, 99–104 (1923)Google Scholar
  5. Fabiani, A., Trebini, F., Favero, M., Peres, B., Palmucci, L.: The significance of atypical mitoses in malignant meningiomas. Acta Neuropathol. (Berl.)38, 299–231 (1977)Google Scholar
  6. Greenberg, G.: Sarcoma after intramuscular iron injection. Br. Med. J.1, 1508–1509 (1976)Google Scholar
  7. Hintzsche, E.: Das Aschenbild tierischer Gewebe und Organe. Berlin, Göttingen, Heidelberg: Springer 1956Google Scholar
  8. Kaufmann, E.: Lehrbuch der speziellen Pathologischen Anatomie. Berlin: de Gruyter 1922Google Scholar
  9. Kent, G., Minick, O. T., Orfei, E., Volini, F. I., Madera-Orsini, F.: The movement of iron-laden lysosomes in rat liver cells during mitosis. Am. J. Pathol.46, 803–828 (1965)Google Scholar
  10. Kunz, J., Shahab, L., Henze, K., David, H.: Experimentelle Untersuchungen zur cancerogenen Wirkung von Eisendextran (Ursoferran). Acta Biol. Med. Ger.10, 602–614 (1963)Google Scholar
  11. Muir, A. R., Goldberg, L.: Observations on subcutaneous macrophages; phagocytosis of iron-dextran and ferritin synthesis. Q. J. Exp. Physiol.46, 289–298 (1961)Google Scholar
  12. Policard, A.: La microincinération des cellules et des tissues. Protoplasma7, 464–481 (1929)Google Scholar
  13. Policard, A.: La méthode de la microincinération. Paris: Hermann 1938Google Scholar
  14. Policard, A., Okkels, H.: Die Mikroveraschung (Mikrospodographie) als histochemische Hilfsmethode. In: Handbuch der Biologischen Arbeitsmethoden, Abderhalden, E. (Hrsg.), Bd. 5/2, S. 1815–1828. Berlin, Wien: Urban und Schwarzenberg 1931Google Scholar
  15. Romeis, B.: Mikroskopische Technik. München: Leibniz 1948Google Scholar
  16. Russel, D. S., Rubinstein, L. J.: Pathology of tumours of the nervous system. 4. ed. London: Arnold 1977Google Scholar
  17. Schicha, H., Müller, W., Kasperek, K., Schröder, R.: Neutronenaktivierungsanalytische Bestimmung der Spurenelemente Kobalt, Eisen, Rubidium, Selen, Zink, Chrom, Silber, Caesium. Antimon und Scandium in operativ entnommenen Hirntumoren des Menschen (1. Mitteilung). Beitr. Pathol.151, 281–296 (1974)Google Scholar
  18. Scott, G. H.: The localisation of mineral salts in cells of some mammalian tissues by microinceneration. Am. J. Anat.53, 243–287 (1933)Google Scholar
  19. Shabo, A. L., Maxwell, D. S.: Electron microscope observations on the fate of particulate matter in the cerebrospinal fluid. J. Neurosurg.29, 464–474 (1968)Google Scholar
  20. Weed, L. H.: Meninges and cerebrospinal fluid. J. Anat.72, 181–215 (1938)Google Scholar
  21. Wessel, W., Gedigk, P.: Die Verarbeitung und Speicherung von phagocytiertem Eisen im elektronenmikroskopischen Bild. Virchows Arch. [Pathol. Anat.]332, 508–532 (1959)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • W. Müller
    • 1
  • H. G. Dahmen
    • 1
  1. 1.Institute for Pathology, Department of NeuropathologyUniversity of CologneKöln 41Federal Republic of Germany

Personalised recommendations