Advertisement

Acta Neuropathologica

, Volume 10, Issue 1, pp 26–33 | Cite as

Topographical differences in the vascular permeability of the peripheral nervous system

  • Yngve Olsson
Original Investigations

Summary

A comparative study was made on the permeability of blood vessels to serum albumin in spinal nerve roots, dorsal root ganglions and peripheral nerves of the rat. Differences in vascular permeability were demonstrated by fluorescence microscopic tracing of intravenously injected albumin labelled with fluoresceinisothiocyanate (FLA) or with Evans blue (EBA). The main findings were as follows:
  1. 1.

    Extramedullary parts of dorsal and ventral spinal nerve roots presented fluorescent albumin both in the walls of blood vessels and in the interstices between the nerve fibres, from the cord to the junction with the peripheral nerve.

     
  2. 2.

    Dorsal root ganglions displayed a rich accumulation of fluorescent albumin in and outside the walls of blood vessels in the capsule and in the endoneurium. In addition, large amounts of albumin were detected in the cortex, filling out the spaces between adjacent neurons. EBA was also traced in satellite cells and occasionally in neurons.

     
  3. 3.

    The endoneurium of peripheral nerves presented fluorescent albumin only in the lumen of the blood vessels, the remaining parts of the nerve fasciculi being devoid of fluorescence. The epineurium and perineurium, on the other hand, contained large amounts of fluorescent albumin both in and outside the blood vessels.

     

Thus, endoneurial blood vessels at different levels of the peripheral nervous system of the rat differ in their permeability, as do blood vessels in the endoneurium, the perineurium and the epineurium of peripheral nerves.

Key-words

Vascular permeability Serum albumin Spinal nerve roots Dorsal root ganglions Peripheral nerves of the rat 

Zusammenfassung

Es wurden Vergleichsuntersuchungen über die Permeabilität der Gefäße für Serumalbumin in den Spinalnervenwurzeln, im Hinterwurzelganglion und in den peripheren Nerven der Ratte durchgefürht. Unterschiede in der Gefäßpermeabilität wurden durch fluorescenzmikroskopischen Nachweis von i.v. injiziertem, mit Fluoresceinisothiocyanat (FLA) oder Evans blue (EBA) gekoppeltem Humanalbumin demonstriert. Die wesentlichen Befunde waren:
  1. 1.

    Die extramedullären Wurzelabschnitte zwischen dem Rückenmark und dem Übergang in den peripheren Nerven ließen fluorescierendes Albumin in den Gefäßwänden und im Interstitium zwischen den Nervenfasern erkennen.

     
  2. 2.

    Die Hinterwurzelganglien zeigten starke Anreicherung von fluorescierendem Albumin inner- und außerhalb der Gefäßwände in der Kapsel und im Endoneurium. Daneben wurden große Albuminmengen im Cortex gefunden, welche die Räume zwischen den benachbarten Neuronen ausfüllten. EBA wurde auch in Satellitenzellen sowie gelegentlich in Neuronen nachgewiesen.

     
  3. 3.

    Das Endoneurium peripherer Nerven zeigte fluorescierendes Albumin lediglich im Gefäßlumen, während die übrigen Abschnitte der Nervenstränge frei von fluorescierendem Material waren. Andererseits zeigten Epi- und Perineurium reichlich fluorescierendes Albumin inner- und außerhalb der Gefäße.

     

Diese Befunde weisen darauf hin, daß die endoneuralen Blutgefäße der Ratte in verschiedenen Abschnitten des peripheren Nervensystems Unterschiede ihrer Permeabilität aufweisen. Gleiches gilt auch für die Gefäße im Endo-, Peri- und Epineurium der peripheren Nerven.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamkiewics, A.: Zum Blutgefäßapparat der Ganglienzelle. Anat. Anz.17, 44–48 (1900).Google Scholar
  2. Andres, K. H.: Untersuchungen über den Feinbau von Spinalganglien. Z. Zellforsch.55, 1–48 (1961).Google Scholar
  3. Bakay, L., andJ. C. Lee: Cerebral edema. Springfield, Ill.: Ch. C. Thomas 1965.Google Scholar
  4. Bergmann, L., andL. Alexander: Vascular supply of the spinal ganglia. Arch. Neurol. Psychiat. (Chic.)46, 761–782 (1941).Google Scholar
  5. Brandt, P. W.: A study of the mechanism of pinocytosis. Exp. Cell Res.15, 300–304 (1958).Google Scholar
  6. Brierley, J. B.: The sensory ganglia: Recent anatomical, physiological and pathological contributions. Acta psychiat. scand.30, 553–576 (1955).Google Scholar
  7. Davsson, H.: In: Handbook of Physiology, pp. 1761–1768. Ed.J. Field, H. W. Magoun, andV. E. Hall. Baltimore: Williams & Wilkins Co. 1960.Google Scholar
  8. Dobbing, J.: Blood-brain barrier. Physiol. Rev.41, 130–188 (1961).Google Scholar
  9. Doinikow, B.: Histologische und histopathologische Untersuchungen am peripheren Nerven-System mittels vitaler Färbung. Folia neuro-biol. (Lpz.)7, 731–749 (1913).Google Scholar
  10. Greenfield's Neuropathology, 2nd ed., edit. byW. Blackwood, H. McMenemy, A. Meyer, R. W. Norman, andD. S. Russel: London. Edward Arnold Ltd. 1963.Google Scholar
  11. Haymaker, W., andJ. W. Kernohan: The Landry-Guillain-Barré Syndrome. Medicine (Baltimore)28, 59–141 (1949).Google Scholar
  12. Holtzer, H., andS. Holtzer: The in vitro uptake of fluorescein labelled plasma proteins. 1. Mature cells. C. R. Lab. Carlsberg31, 373–413 (1960).Google Scholar
  13. Holter, H.: Pinocytosis. Int. Rev. Cytol.8, 481–504 (1959).Google Scholar
  14. Klatzo, I.: Neuropathological aspects of brain edema. J. Neuropath. exp. Neurol.26, 1–14 (1967).Google Scholar
  15. —,J. Miquel, C. Tobias, andW. Haymaker: Effects of alpha particle radiation on the rat brain, including vascular permeability and glycogen studies. J. Neuropath. exp. Neurol.20, 459–483 (1961).Google Scholar
  16. —— andR. Otenasek: The application of fluorescein labelled serum proteins (FLSP) to the study of vascular permeability in the brain. Acta neuropath. (Berl.)2, 144–160 (1962).Google Scholar
  17. —,W. Wisniewski, andD. Smith: Observations on penetration of serum proteins into the central nervous system. Progr. Brain Res.15, 73–88 (1965).Google Scholar
  18. —, andO. Steinwall: Oberservation on cerebrospinal fluid pathways and behaviour of the bloodbrain barrier in sharks. Acta neuropath. (Berl.)5, 161–175 (1965).Google Scholar
  19. Lajtha, A.: In: Neurochemistry, pp. 399–430. Ed.K. A. C. Elliot, I. H. Page, andJ. H. Quastel, 2nd ed. Springfield, Ill.: Ch. C. Thomas 1962.Google Scholar
  20. Mancini, R. E.: Connective tissue and serum proteins. Int. Rev. Cytol.14, 193–222 (1963).Google Scholar
  21. Olsson, Y.: Studies on vascular permeability in peripheral nerves. 1. Distribution of circulating fluorescent serum albumin in normal, crushed and sectioned peripheral nerve. Acta neuropath. (Berl.)7, 1–15 (1966a).Google Scholar
  22. —: Studies on vascular permeability in peripheral nerves. 2. Distribution of circulating fluorescent serum albumin in rat sciatic nerve after local injection of 5-hydroxytryptamine, histamine and Compound 48/80. Acta physiol. scand., Suppl.69, 284 (1966b).Google Scholar
  23. —: The effect of the histamine liberator, Compound 48/80 on mast cells in normal peripheral nerve. Acta path. microbiol. scand.68, 565–575 (1966c).Google Scholar
  24. —: The effect of the histamine liberator, Compound 48/80 on mast cells in sectioned peripheral nerve. Acta path. microbiol. scand.68, 575–584 (1966d).Google Scholar
  25. Rosenbluth, J., andS. L. Wissig: The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol.23, 307–325 (1964).Google Scholar
  26. Spatz, H.: Die Bedeutung der vitalen Färbung für die Lehre vom Stoffaustausch zwischen dem Zentralnervensystem und dem übrigen Körper. Arch. Psychiat. Nervenkr.101, 267–321 (1933/34).Google Scholar
  27. Steinwall, O., andI. Klatzo: Selective vulnerability of blood-brain barrier in chemically induced lesions. J. Neuropath. exp. Neurol.25, 542–559 (1966).Google Scholar
  28. Streicher, E., H. Wisniewski, andI. Klatzo: Resistance of immature brain to experimental cerebral oedema. Neurology (Minneap.)15, 833–836 (1965).Google Scholar
  29. Sunderland, S.: The connective tissues of peripheral nerves. Brain88, 841–854 (1965).Google Scholar
  30. Tower, D. P.: In: Properties of membranes and dieseases of the nervous system, pp. 1–40. New York: Springer 1962.Google Scholar
  31. Tschetschujeva, T.: Über die Speicherung von Trypanblau in Ganglien verschiedener Gebiete des Nervensystems. Z. ges. exp. Med.69, 208–219 (1929/30).Google Scholar
  32. Tschirgi, R. D.: In: Handbook of Physiology, Ed.J. Field, H. W. Magoun, andV. E. Hall, pp. 1865–1890. Baltimore: Williams & Wilkins 1960.Google Scholar
  33. Waksman, B. H.: Experimental study of diphteric polyneuritis in the rabbit and guinea pig. III. The blood nerve barrier in the rabbit. J. Neuropath. exp. Neurol.20, 35–77 (1961).Google Scholar
  34. Wright, S.: Applied Physiology. 9th ed. London-New York-Toronto: Oxford University Press 1955.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Yngve Olsson
    • 1
  1. 1.Neuropathological Laboratory, Department of Pathology IUniversity of GöteborgSweden

Personalised recommendations