Archives of Microbiology

, Volume 110, Issue 2–3, pp 185–194 | Cite as

Spirochaeta halophila sp. n., a facultative anaerobe from a high-salinity pond

  • E. P. Greenberg
  • E. Canale-Parola


A facultatively anaerobic spirochete isolated from a high-salinity pond grew optimally when 0.75 M NaCl, 0.2 M MgSO4, and 0.01 M CaCl2 were present in media containing yeast extract, peptone, and a carbohydrate. The organism failed to grow when any one of these three salts was omitted from the medium. Aerobically-grown colonies of the spirochete were red, whereas anaerobically-grown colonies showed no pigmentation. Non-pigmented mutants of the spirochete were isolated.

The spirochete used carbohydrates, but not amino acids, as energy sources. Glucose was fermented to CO2, H2, ethanol, acetate, and a small amount of lactate. Determinations of radioactivity in products formed from glucose-1-14C and enzymatic assays indicated that glucose was dissimilated to pyruvate mainly via the Embden-Meyerhof pathway. Pyruvate was metabolized through a clostridial-type clastic reaction.

Cells growing acrobically performed an incomplete oxidation of glucose mainly to CO2 and acetate. Comparison of aerobic and anaerobic growth yields indicated that oxidative phosphorylation occurred in cells growing aerobically. The guanine + cytosine content of the DNA of the spirochete was 62 moles%. It is proposed that the spirochete described herein be considered a new species and that it be namedSpirochaeta halophila.

Key words

Spirochaeta halophila Halophilic bacteria Solar lake Selective isolation Facultatively anaerobic spirochetes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayley, S. T., Kushner, D. J.: The ribosomes of the extremely halophilic bacterium,Halobacterium cutirubrum. J. molec. Biol.9, 654–669 (1964)Google Scholar
  2. Breznak, J. A., Canale-Parola, E.:Spirochaeta aurantia, a pigmented, facultatively anaerobic spirochete. J. Bact.97, 386–395 (1969)Google Scholar
  3. Breznak, J. A., Canale-Parola, E.: Metabolism ofSpirochaeta aurantia. I. Anaerobic energy-yielding pathways. Arch. Mikrobiol.83, 261–277 (1972a)Google Scholar
  4. Breznak, J. A., Canale-Parola, E.: Metabolism ofSpirochaeta aurantia. II. Aerobic oxidation of carbohydrates. Arch. Mikrobiol.83, 278–292 (1972b)Google Scholar
  5. Breznak, J. A., Canale-Parola, E.: Morphology and physiology ofSpirochaeta aurantia strains isolated from aquatic habitats. Arch. Microbiol.105, 1–12 (1975)Google Scholar
  6. Buchanan, R. E., Gibbons, N. E. (eds.): Bergey's manual of determinative bacteriology, 8th ed. Baltimore: Williams and Wilkins 1974Google Scholar
  7. Canale-Parola, E., Holt, S. C., Udris, Z.: Isolation of free-living, anaerobic spirochetes. Arch. Mikrobiol.59, 41–48 (1967)Google Scholar
  8. Canale-Parola, E., Udris, Z., Mandel, M.: The classification of free-living spirochetes. Arch. Mikrobiol.63, 385–397 (1968)Google Scholar
  9. Conn, H. J., Jennison, M. W., Weeks, O. B.: Routine tests for the identification of bacteria. In: Manual of microbiological methods (M. J. Pelczar, H. J. Conn, eds.), pp. 140–168. New York: McGraw-Hill 1957Google Scholar
  10. DeLey, J.: Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bact.101, 738–754 (1970)Google Scholar
  11. Eckstein, Y.: Physicochemical limnology and geology of a meromictic pond on the Red Sea shore. Limnol. Oceanogr.15, 363–372 (1970)Google Scholar
  12. Greenberg, E. P., Canale-Parola, E.: Carotenoid pigments of facultatively anaerobic spirochetes. J. Bact.123, 1006–1012 (1975)Google Scholar
  13. Hespell, R. B., Canale-Parola, E.: Carbohydrate metabolism inSpirochaeta stenostrepta. J. Bact.103, 216–226 (1970a)Google Scholar
  14. Hespell, R. B., Canale-Parola, E.:Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch. Mikrobiol.74, 1–18 (1970b)Google Scholar
  15. Hespell, R. B., Joseph, R., Mortlock, R. P.: Requirement for coenzyme A in the phosphoroclastic reaction of anaerobic bacteria. J. Bact.100, 1328–1334 (1969)Google Scholar
  16. Holdeman, L. V., Moore, W. E. C.: Anaerobe laboratory manual. V.P.I. Anaerobe Laboratory, Virginia Polytechnic Institute and State Univ. Virginia (1972)Google Scholar
  17. Joseph, R., Canale-Parola, E.: Axial fibrils of anaerobic spirochetes: Ultrastructural and chemical characteristics. Arch. Mikrobiol.81, 146–168 (1972)Google Scholar
  18. Koepsell, H. J., Johnson, M. J.: Dissimilation of pyruvic acid by cell-free preparations ofClostridium butylicum. J. biol. Chem.145, 379–386 (1942)Google Scholar
  19. Krumbein, W. E., Cohen, Y.: Biogene, klastische und evaporitische Sedimentation in einem mesothermen monomiktischen ufernahen See (Golf von Aqaba). Geol. Rundschau63, 1035–1065 (1974)Google Scholar
  20. Kushner, D. J.: Halophilic bacteria. Advanc. appl. Microbiol.10, 73–97 (1968)Google Scholar
  21. Lanyi, J. K.: Salt-dependent properties of proteins from extremely halophilic bacteria. Bact. Rev.38, 272–290 (1974)Google Scholar
  22. Larsen, H.: Halophilism. In: The bacteria, Vol. IV (I. C. Gunsalus, R. Y. Stanier, eds.), pp. 297–342. New York: Academic Press 1962Google Scholar
  23. Larsen, H.: The halobacteria's confusion to biology. Antonie v. Leeuwenhoek39, 383–396 (1973)Google Scholar
  24. MacLeod, R. A.: On the role of inorganic ions in the physiology of marine bacteria. Advanc. Microbiol. Sea1, 95–126 (1968)Google Scholar
  25. Reichelt, J. L., Baumann, P.: Effect of sodium chloride on growth of heterotrophic marine bacteria. Arch. Microbiol.97, 329–345 (1974)Google Scholar
  26. Stadtman, E. R., Novelli, G. D., Lipmann, F.: Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J. biol. Chem.191, 365–376 (1951)Google Scholar
  27. Stouthamer, A. H.: Determination and significance of molar growth yields. In: Methods in microbiology, Vol. I (I. R. Norris, D. W. Ribbons, eds.), pp. 629–663. New York: Academic Press 1969Google Scholar
  28. Umbreit, W. W., Burris, R. H., Stauffer, J. F.: Manometric techniques. Minneapolis, Minn.: Burgess 1964Google Scholar
  29. Wolfe, R. S., O'Kane, D. J.: Cofactors of the phosphoroclastic reaction ofClostridium butyricum. J. biol. Chem.205, 755–765 (1953)Google Scholar
  30. Wolfe, R. S., O'Kane, D. J.: Cofactors of the carbon dioxide exchange reaction ofClostridium butyricum. J. biol. Chem.215, 637–643 (1955)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • E. P. Greenberg
    • 1
  • E. Canale-Parola
    • 1
  1. 1.Department of MicrobiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations