Acta Neuropathologica

, Volume 68, Issue 3, pp 175–184 | Cite as

Histochemical localization of aluminum in the rabbit CNS

  • G. Y. Wen
  • H. M. Wisniewski
Original Works

Summary

Aluminum was observed in the nucleolus, interchromatin granules, rough endoplasmic reticulum, free ribosomes, euchromatin, and the heterochromatin of the neuron. The association of aluminum with the first four r-RNA-containing cellular components and with the last two DNA-containing chromatins suggests the association of aluminum with the nucleic acids. The aluminum may interfere with the normal mechanism of the protein synthesis of r-RNA and of the transcription or gene modulation of DNA. Aluminum was also observed in the astrocytic process and in the nuclei of endothelial cells, pericytes, and the muscle cells of the blood vessels. The detection of aluminum in the pyrimidal cells of the cerebral cortex and hippocampus and in the spinal cord neurons, was observed 1 h after i. v. injection, indicating a rapid entry of aluminum from the injection site through the blood-brain barrier (BBB) to the neurons. Using Morin stain, pyramidal neurons of the cerebral cortex and hippocampus, motoneurons of spinal cord, ganglion cells, and bipolar cells of retina and Purkinje cells of cerebellum, exhibited yellow fluoroscence, with peak intensitiy at 560 nm. Tangles were observed in these six types of neurons. The granule cells of hippocampus and cerebellum and the photoreceptors of the retina exhibited green fluorescence with the peak intensity at 490–500 nm. Tangles were not observed in these three types of neurons.

Key words

Aluminum localization Nucleolus Ribosomal RNA DNA Astrocytic process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfrey AC, LeGendre GR, Kaehny WD (1976) The dialysis encephalopathy syndrome. New Engl J Med 294:184–188Google Scholar
  2. Alfrey AC (1978) Dialysis encephalopathy syndrome. Ann Rev Med 29:93–98Google Scholar
  3. Biswas CK, Arze RS, Ramos JM, Ward MK, Dewar JH, Kerr DN, Kenward DH (1982) Effect of aluminum hydroxide on serum ionised calcium, immunoreactive parathyroid hormone, and aluminum in chronic renal failure. Br Med J 284:776–778Google Scholar
  4. Bowen HMJ (1966) Trace elements in biochemistry. Academic Press, London New York, p 241Google Scholar
  5. Brun A, Brunk U (1970) Histochemical indication for lysosomal localization of heavy metals in the normal rat brain and liver. J Histochem Cytochem 18:820–827Google Scholar
  6. Crapper DR, Krishman SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science 180:411–513Google Scholar
  7. Crapper DR, Krishman SS, Quittkat S (1976) Aluminum, neurofibrillary degeneration and Alzheimer's disease. Brain 99:67–80Google Scholar
  8. Crapper DR, Quittkat S, Krishman SS, Dalton AJ, De Boni U (1980) Intranuclear aluminum content in Alzheimer's disease, dialysis encephalopathy and experimental aluminum encephalopathy. Acta Neuropathol (Berl) 50:19–24Google Scholar
  9. Danscher G, Zimmer J (1978) An improved Timm sulphide silver method for light and electron microscopic localization of heavy metals in biological tissues. Histochemistry 55:27–40Google Scholar
  10. Danscher G (1981) Histochemical demonstration of heavy metals — A revised version of the sulfide silva method suitable for both light and electron microscopy. Histochemistry 71:1–6Google Scholar
  11. De Boni U, Scott JW, Crapper DR (1974) Intracellular aluminum binding: A histochemical study. Histochemistry 40: 31–37Google Scholar
  12. De Boni U, Otvos A, Scott AO, Crapper DR (1976) Neurofibrillary degeneration induced by systemic aluminum. Acta Neuropathol (Berl) 35:285–294Google Scholar
  13. Dowson JH (1982) The evaluation of autofluorescence emission spectra derived from neuronal lipopigment. J Microsc 128:261–270Google Scholar
  14. Dowson JH (1983) Autofluorescence emission spectra of neuronal lipopigment in a case of adult-onset ceroidosis (Kuf's disease). Acta Neuropathol (Berl) 59:241–245Google Scholar
  15. Frenster JH (1969) Biochemistry and molecular biophysics of heterochromatin and euchromatin. In: Lima-De-Faria A (ed) Handbook of molecular cytology. American Elsevier, New York, pp 251–276Google Scholar
  16. Galle P, Berry JP, Duckett S (1980) Electron microprobe ultrastructural localization of aluminum in rat brain. Acta Neuropathol (Berl) 49:245–247Google Scholar
  17. Haug F-MS (1973) Heavy metals in the brain. A light microscope study of the rat with Timm's sulfide silver method. Methodological consideration and cytological and regional staining patterns. Adv Anat Embryol Cell Biol 47:1–71Google Scholar
  18. Hem SL, White JL, Buehler JD, Luber JR, Grim WM, Lipka EA (1982) Evaluation of antacid suspensions containing aluminum hydroxide and magnesium hydroxide. Am J Hosp Pharmacy 39:1925–1930Google Scholar
  19. Ibata Y, Otuska N (1969) Electron microscopic demonstration of zinc in the hippocampal formation using Timm's sulfidesilver technique. J Histochem Cytochem 17:171–175Google Scholar
  20. Klatzo I, Wisniewski H, Streicher E (1965) Experimental production of neurofibrillary degeneration. J Neuropathol Exp Neurol 24:187–199Google Scholar
  21. Kohler T (1981) Histochemical and cytochemical demonstration of zinc cysteinate in the tapetum lucidium of the cat. Histochemistry 70:173–178Google Scholar
  22. Mazarguil H, Haran R, Laussac JP (1982) The binding of aluminum to [Leu5]-enkephalin: An investigation using H,13C and27Al NMR spectroscopy. Biochim Biophys Acta 717:465–472Google Scholar
  23. Miller OL, Beatty BR (1969) Nucleolar structures and function. In: Lima-De-Faria A (ed) Handbook of molecular cytology. American Elsevier, New York, pp 605–619Google Scholar
  24. Perl DP, Brody AR (1980) Alzheimer's disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangles bearing neurons. Science 208:297–299Google Scholar
  25. Perl DP, Gajdusek DC, Garruto RM, Yanagihera RT, Gibb CJ (1982) Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Science 217:1053–1055Google Scholar
  26. Perry RP (1969) Nucleoli: The cellular sites of ribosome production. In: Lima-De-Faria A (ed) Handbook of molecular cytology. American Elsevier, New York, pp 620–636Google Scholar
  27. Sanderson C, Crapper McLachlan DR, De Boni U (1982) Inhibition of corticosterone binding in vitro in rabbit hippocampus by chromatin-bound aluminum. Acta Neuropathol (Berl) 57:249–254Google Scholar
  28. Simard R, Langeiler Y, Mandeville R, Maestracci N, Royal A (1974) Inhibitors as tools in elucidating the structure and function of the nucleus. In: Busch H (ed) The cell nucleus, vol 3. Academic Press, New York London, pp 447–487Google Scholar
  29. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43Google Scholar
  30. Terry RD, Pena C (1965) Experimental production of neurofibrillary degeneration. J Neuropathol Exp Neurol 24:200–210Google Scholar
  31. Timm F (1958a) Zur Histochemie der Schwermetalle. Das Sulfidisilberverfahren. Dtsch Z Gerichtl Med 46:706–711Google Scholar
  32. Timm F (1958b) Zur Histochemie des Ammonshorngebietes. Z Zellforsch 48:548–555Google Scholar
  33. Udenfriend S (1962) Fluorescence assay. In: Biology and medicine, vol 1. Academic Press, New York London, pp 390–391Google Scholar
  34. Udenfriend S (1969) Fluorescence assay In: Biology and medicine, vol 2. Academic Press, New York London, pp 491–492Google Scholar
  35. Weast RC, Astele MJ (1982) CRC Handbook of chemistry and physics. CRC Press, Boca Raton, FLGoogle Scholar
  36. Wisniewski HM, Terry RD, Pena C, Streicher E, Klatzo I (1965) Experimental production of neurofibrillayry degeneration. J Neuropathol Exp Neurol 24:139 (Abstract)Google Scholar
  37. Wisniewski HM, Markiewcz O, Wisniewiski K (1967) Topography and dynamics of neurofibrillar degeneration in aluminum encephalopathy. Acta Neuropathol (Berl) 9:127–133Google Scholar
  38. Wisniewski HM, Bloom BR (1975) Experimental allergic optic neuritis iEAON) in the rabbits. J Neurol Sci 24:257–263Google Scholar
  39. Wisniewski HM, Wen GY, Lidsky AA (1978) Aluminum-induced neurofibrillary changes in the rabbit retina: ERG and morphological studies. VIIth International Congress of Neuropathology, Washington, DC, section 382 [Abstr]Google Scholar
  40. Wisniewski HM, Sturman JA, Shek JW (1979) Aluminum chloride-induced neurofibrillary changes in the developing rabbit: A chronic animal model. Ann Neurol 8:479–490Google Scholar
  41. Wisniewski HM, Sturman JA, Shek JW (1982) Chronic model of neurofibrillary changes induced in nature rabbits by metallic aluminum. Neurobiol Aging 3:11–22Google Scholar
  42. Yokel RA (1982) Hair as an indicator of excessive aluminum exposure. Clin Chem 28:662–664Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • G. Y. Wen
    • 1
  • H. M. Wisniewski
    • 1
  1. 1.New York State Office of Mental Retardation and Developmental DisabilitiesInstitute for Basic Research in Developmental DisabilitiesStaten IslandUSA

Personalised recommendations