Advertisement

Foundations of Physics Letters

, Volume 1, Issue 3, pp 205–244 | Cite as

Einstein-Podolsky-Rosen experiments: the structure of the probability space. I

  • Matthias P. Kläy
Article

Abstract

Incompatibility of measurements, central to quantum mechanics, is captured in the formalism of empirical logic, which is based on a generalization of the notion of a sample space in Kolmogoroff's axiomatic theory of probability. In composite empirical systems of the kind considered in the Einstein-Podolsky-RosenGedankenexperiment, incompatibility gives rise to the notion of influence, which is closely related to stochastic independence.

These concepts are used to study the methodological structure of a large class of Einstein-Podolsky-Rosen type experiments, linking a series of much debated issues such as scientific Realism, ontological and epistemic uncertainty, determinism, locality, separability, factorizability, completeness, conservation, correlation, Bell-Clauser-Horne inequalities, and hidden-variables models to an axiomatic probability theory.

Keywords

Einstein-Podolsky-Rosen Paradox Bell Inequalities Locality Scientific Realism Axiomatic Probability Quantum Mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aerts, D.:“Description of Many Physical Entities Without the Paradoxes Encountered in Quantum Mechanics,”Foundations of Physics 12, 1131 (1982).Google Scholar
  2. [2]
    Aspect, A., Dalibard, J., Roger, G.: “Experimental Test of Bell's Inequalities Using Variable Analyzers,”Phys. Rev. Lett. 49, 1804–1807 (1982).Google Scholar
  3. [3]
    Belinfante, F.:A Survey of Hidden-Variables Theories (Pergamon, New York, 1973).Google Scholar
  4. [4]
    Bell, J.S.: “On the Einstein-Rosen-Podolsky Paradox,”Physics 1, 195–200 (1964).Google Scholar
  5. [5]
    Beltrametti, E.G., Cassinelli, G.:The Logic of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1981).Google Scholar
  6. [6]
    Birkhoff, G., von Neumann, J.: “The Logic of Quantum Mechanics,”Ann. Math. 37(4), 823–843 (1936).Google Scholar
  7. [7]
    Brøndsted, A.:An Introduction to Convex Polytopes (Graduate Texts in Mathematics90) (Springer-Verlag, New York 1983).Google Scholar
  8. [8]
    Clauser, J.F., Horne, M.A.: “Experimental Consequences of Objective Local Theories,”Phys. Rev. D 10, 526–535 (1974).Google Scholar
  9. [9]
    Cook, T.A.: “Banach Spaces of Weights on Quasimanuals,”Int. J. Theoret. Phys. 24, 1113–1131 (1985).Google Scholar
  10. [10]
    Dirac, P.A.M.:The Principles of Quantum Mechanics, 1st edn. (Clarendon Press, Oxford, 1930).Google Scholar
  11. [11]
    Einstein, A., Podolsky, B., Rosen, N.: “Can Quantum Mechanical Description of Physical Reality Be Considered Complete?”Phys. Rev. 47, 777–780 (1935).Google Scholar
  12. [12]
    d'Espagnat, B.:In Search of Reality (Springer, New York, 1983).Google Scholar
  13. [13]
    Fine, A.: “Hidden Variables, Joint Probability, and the Bell Inequalities,”Phys. Rev. Lett. 48(5), 291–295 (1 February 1982).Google Scholar
  14. [14]
    Fine, A.: “Joint Distributions, Quantum Correlations, and Commuting Observables,”J. Math. Phys. 23(7), 1306–1310 (1982).Google Scholar
  15. [15]
    Fine, A.: “Antinomies of Entanglement: The Puzzling Case of the Tangled Statistics,”J. Phil. LXXIX(12), 733–747 (1982).Google Scholar
  16. [16]
    Fine, A.:The Shaky Game: Einstein, Realism and the Quantum Theory (The University of Chicago Press, Chicago, 1986).Google Scholar
  17. [17]
    Fischer, H.R., Rüttimann, G.T.: “Limits of Manuals and Logics,” inMathematical Foundations of Quantum Theory, A.R. Marlow, ed. (Academic, New York, 1978), pp. 127–152.Google Scholar
  18. [18]
    Foulis, D.J., Piron, C., Randall, C.H.: “Realism, Operationalism, and Quantum Mechanics,”Found. Phys. 13(8), 813–841 (1983).Google Scholar
  19. [19]
    Foulis, D.J., Randall, C.H.: “Operational Statistics. I. Basic Concepts,”J. Math. Phys. 13, 1667–1675 (1972).Google Scholar
  20. [20]
    Foulis, D.J., Randall, C.H.: “Empirical Logic and Quantum Mechanics,”Synthese 29, 81–111 (1974).Google Scholar
  21. [21]
    Foulis, D.J., Randall, C.H.: “Manuals, Morphisms, and Quantum Mechanics,” inMathematical Foundations of Quantum Theory, A.R. Marlow, ed. (Academic, New York, 1978).Google Scholar
  22. [22]
    Foulis, D.J., Randall, C.H.: “Empirical Logic and Tensor Products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 9–20.Google Scholar
  23. [23]
    Foulis, D.J., Randall, C.H.: “Dirac Revisited,” inSymposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1985), pp. 97–112.Google Scholar
  24. [24]
    Garg, A., Mermin, N.D.: “Correlation Inequalities and Hidden Variables,”Phys. Rev. Lett. 49(17), 1220–1223 (25 Oct. 1982).Google Scholar
  25. [25]
    Gerelle, E.R., Greechie, R.J., Miller, F.R.: “Weights on Spaces,” inPhysical Reality and Mathematical Description, E.P. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974), pp. 169–192.Google Scholar
  26. [26]
    Gleason, A.: “Measures on the Closed Subspaces of a Hilbert Space,”J. Math. and Mech. 6, 885–893 (1957).Google Scholar
  27. [27]
    Greechie, R.J., Gudder, S.P.: “Quantum Logics,” inContemporary Research in the Foundations and Philosophy of Quantum Theory, C.A. Hooker, ed. (Reidel, Dordrecht, 1973), pp. 143–173.Google Scholar
  28. [28]
    Grünbaum, B.:Convex Polytopes (Interscience, London, 1967).Google Scholar
  29. [29]
    Gudder, S.P.:Stochastic Methods in Quantum Mechanics(North-Holland, New York, 1979).Google Scholar
  30. [30]
    Gudder, S.P.: “Logical Cover Spaces,”Annales de l'Institut Henri Poincaré 45, 327–337 (1986).Google Scholar
  31. [31]
    Gudder, S.P., Kläy, M.P., Rüttimann, G.T.: “States on Hypergraphs,”Demonstratio Mathematica 19(2), 503–526 (1986).Google Scholar
  32. [32]
    Gudder, S.P., Rüttimann, G.T., Greechie, R.J.: “Measurement, Hilbert Space and Quantum Logic,”J. Math. Phys. 23, 2381–2386 (1982).Google Scholar
  33. [33]
    Heraklites: Diels-Kranz Fragment 22 B 107.Google Scholar
  34. [34]
    Hill, T.L.:Statistical Mechanics: Principles and Selected Applications (Dover, New York, 1987).Google Scholar
  35. [35]
    Jammer, M.:The Philosophy of Quantum Mechanics (Wiley, New York, 1974).Google Scholar
  36. [36]
    Jarrett, J.P.: “On the Physical Significance of the Locality Conditions in the Bell Arguments,”Noûs 18, 569–589 (1984).Google Scholar
  37. [37]
    Jarrett, J.P.: “An Analysis of the Locality Assumption in the Bell Arguments,” inFundamental Questions in Quantum Mechanics, L.M. Roth and A. Inomata, eds. (Gordon & Breach, New York, 1986), pp. 21–28.Google Scholar
  38. [38]
    Jarrett, J.P.: “Bell's Theorem: A Guide to the Implications,” Talk at the UC Berkeley Philosophy Department (7 May 1987).Google Scholar
  39. [39]
    Jauch, J.M.:Foundations of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1968).Google Scholar
  40. [40]
    Kalmbach, G.:Orthomodular Lattices (Academic, New York, 1983).Google Scholar
  41. [41]
    Kläy, M.P.:Stochastic Models on Empirical Systems, Empirical Logics and Quantum Logics, and States on Hypergraphs, Dissertation, Universität Bern 1985.Google Scholar
  42. [42]
    Kläy, M.P. “Quantum Logic Properties of Hypergraphs,”Found. Phys. 17(10), 1019–1036 (1987).Google Scholar
  43. [43]
    Kläy,M.P., Randall,C.H., Foulis,D.J.: “Tensor Products and Probability Weights,”Int.J.Theoret.Phys. 26(3), 199–219(1987).Google Scholar
  44. [44]
    Kolmogoroff, A.:Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer-Verlag, Berlin, 1933).Google Scholar
  45. [45]
    Laplace, P.S.:Essai Philosophique sur les Probabilités (Chiron, Paris, 1920) (1st edn. 1814).Google Scholar
  46. [46]
    Mackey, G.W.:Mathematical Foundations of Quantum Mechanics (Benjamin/Cummings, Reading, Massachusetts, 1963).Google Scholar
  47. [47]
    Mermin, N.D.: “Bringing Home the Atomic World: Quantum Mysteries for Anybody,”Am. J. Phys. 49(10), 940–943 (1981).Google Scholar
  48. [48]
    Mermin, N.D.: “The EPR Experiment — Thoughts About the ‘Loophole’,” inNew Techniques and Ideas in Quantum Measurement Theory, D.M. Greenberger, ed. (New York Academy of Sciences, New York, 1986), pp. 422–427.Google Scholar
  49. [49]
    von Neumann, J.:Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin 1932).Google Scholar
  50. [50]
    Pauli, W.:General Principles of Quantum Mechanics (Springer-Verlag, Berlin, 1980).Google Scholar
  51. [51]
    Piccioni, O., Mehlhop, W.: “A Discussion of the EPR Contained in Quantum Mechanical Terms Without Arguments of Realities or Bell's Relations,” inNew Techniques and Ideas in Quantum Measurement Theory, D.M. Greenberger, ed. (New York Academy of Sciences, New York, 1986).Google Scholar
  52. [52]
    Popper, K.: “Realism in Quantum Mechanics and a New Version of the EPR Experiment,” inOpen Questions in Quantum Physics, G. Tarozzi and A. van der Merwe, eds. (Reidel, Dordrecht, 1985).Google Scholar
  53. [53]
    Randall, C.H., Foulis, D.J.: “An Approach to Empirical Logic,”Am. Math. Monthly 77(4), 363–373 (April 1970).Google Scholar
  54. [54]
    Randall, C.H., Foulis, D.J.: “Operational Statistics II. Manuals of Operations and their Logics,”J. Math. Phys. 14, 1472–1480 (1973).Google Scholar
  55. [55]
    Randall, C.H., Foulis, D.J.: “Operational Statistics and Tensor Products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, -1981), pp. 21–28.Google Scholar
  56. [56]
    Randall, C.H., Foulis, D.J.: “A Mathematical Language for Quantum Physics,” inTransactions of the 25e Cours de perfectionnement de l'Association Vaudoise des Chercheurs en Physique: Les Fondements de la Mécanique Quantique, C. Gruber, C. Piron, T. Minhtôm, and R. Weill, eds. (Montana, Switzerland, 1983), pp. 193–226.Google Scholar
  57. [57]
    Randall, C.H., Foulis, D.J.: “Properties and Operational Propositions in Quantum Mechanics,”Found. Phys. 13(8), 843–857 (1983).Google Scholar
  58. [58]
    Randall, C.H., Foulis, D.J.: “Stochastic Entities,” inRecent Developments in Quantum Logic, P. Mittelstaedt and E. Stachow, eds. (Bibliographisches Institut, Mannheim, 1985), pp. 265–284.Google Scholar
  59. [59]
    Rüttimann, G.T.: “Detectable Properties and Spectral Quantum Logics,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 35–47.Google Scholar
  60. [60]
    Rüttimann, G.T.:Ordered Vector Spaces, Quantum Logics and Convexity, Lecture Notes, University of Denver, 1981.Google Scholar
  61. [61]
    Schrödinger, E.: “Die Gegenwärtige Situation der Quantenmechanik,”Naturwiss. 23, 807–812, 824–828, 844–849 (1935).Google Scholar
  62. [62]
    Shimony, A.: “Contextual Hidden Variables Theories and Bell's Inequalities,”Brit. J. Phil. Sc. 35, 25–45 (1984).Google Scholar
  63. [63]
    Shimony, A.: “The Significance of Jarrett's ‘Completeness’ Condition,” inFundamental Questions in Quantum Mechanics, L.M. Roth and A. Inomata, eds. (Gordon & Breach, New York, 1986).Google Scholar
  64. [64]
    Shimony, A.: “Events and Processes in the Quantum World,” inQuantum Concepts in Space and Time, R. Penrose and C.J. Isham, eds. (Oxford Science Publications, Clarendon Press, Oxford, 1986).Google Scholar
  65. [65]
    Skyrms, B.: “Counterfactual Definiteness and Local Causation,”Phil. Sc. 49, 43–50 (1982).Google Scholar
  66. [66]
    Stapp, H.P.: “S-matrix Interpretation of Quantum Theory,”Phys. Rev. D 3, 1303–1320 (1971).Google Scholar
  67. [67]
    Suppes, P., Zanotti, M.: Preprint, Stanford University 1987.Google Scholar
  68. [68]
    Varadarajan, V.S.:Geometry of Quantum Theory (Van Nostrand, London, 1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Matthias P. Kläy
    • 1
  1. 1.Institute for Mathematical Studies in the Social SciencesStanford UniversityStanfordUSA

Personalised recommendations