Journal of comparative physiology

, Volume 130, Issue 4, pp 283–292

Subunit heterogeneity in arthropod hemocyanins: I. Chelicerata

  • J. Markl
  • A. Markl
  • W. Schartau
  • B. Linzen
Article

Summary

  1. 1.

    The hemocyanins of 2 spiders (Eurypelma californicum, Cupiennius salei), 2 scorpions (Pandinus pallidus, Androctonus australis), a whipscorption (Mastigoproctus brasilianus) and 2 whipspiders (Tarantula palmata, Trichodamon froesi) were analyzed for subunit heterogeneity by high resolution polyacrylamide electrophoresis (PAGE). For comparison,Limulus polyphemus hemocyanin was subjected to the same analytical scheme.

     
  2. 2.

    All of the species, except forLimulus (predominantly 60 S-hemocyanin) andCupiennius (16 S- and 24 S-hemocanin) possess only hemocyanin sedimenting in the 33 S to 37 S range. A second, major blood protein was observed in each species, safeMastigoproctus. This second, non-respiratory protein sediments with ca. 16 S, but with about 24 S in the case of the scorption species.

     
  3. 3.

    Upon incubation with sodium dodecylsulfate (SDS) and β-mercaptoethanol and electrophoresis in polyacrylamide gradients, between 2 and 5 hemocyanin bands are obtained, with average molecular weights between 70,000 and 75,000. The non-respiratory proteins yield two chains in each case, with molecular weights between 95,000 and 130,000.

     
  4. 4.

    Each hemocyanin could be dissociated at pH 9.6 to yield “native” subunits. By gel filtration, these were separated into monomers (4.5S) and dimers (6 S). No dimers were observed after dissociation ofPandinus and ofLimulus hemocyanin. Only in the case ofCupiennius the dimer is formed by a disulfide bridge. — PAGE of the dissociation mixture shows complex patterns which display 6–7 bands.

     
  5. 5.

    By preparative isolation of “native” subunits and subsequent analysis in SDS-PAGE, the two patterns of hemocyanin bands could be related to each other, and the total number of different polypeptide chains established with some certainty. It ranges from 5 inCupiennius 16 S-hemocyanin to 8 inAndroctonus hemocyanin and possibly 12 inLimulus hemocyanin. A loose correlation between oligomer size and number of different chains is suggested.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busselen, P.: The electrophoretic heterogeneity ofCarcinus maenas hemocyanin. Arch. Biochem. Biophys.137, 415–420 (1970)Google Scholar
  2. Goyffon, M., le Fichoux, Y., Lamy, J.: Hétérogénéité du protéinogramme de l'hémolymphe des ScorpionsAndroctonus australis L.,Androctonus mauretanicus Pocock etAndroctonus amoreuxi Aud. et Sav. en gel de polyacrylamide. C.R. Soc. Biol.164, 374–378 (1970)Google Scholar
  3. Goyffon, M., Stockmann, R., Lamy, J.: Valeur taxonomique de l'électrophorèse en disques des protéines de l'hémolymphe chez le Scorpion: étude du genreButhotus (Buthidae). C.R. Acad. Sci. Paris277 D, 61–63 (1973)Google Scholar
  4. Jeffrey, P.D., Shaw, D.C., Treacy, G.B.: Hemocyamin from the Australian freshwater crayfishCherax destructor. Studies of two different monomers and their participation in the formation of multiple hexamers. Biochemistry15, 5527–5533 (1976)Google Scholar
  5. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T 4. Nature (Lond.)227, 680–685 (1970)Google Scholar
  6. Lamy, J., Goyffon, M., Sassé, M., Vachon, M.: L'électrophorése des protéines de l'hémolymphe en gel de polyacrylamide, premier critère biochimique pour l'identification des scorpions. Biochimie53, 249–251 (1971)Google Scholar
  7. Lamy, J., Lamy, J., Baglin, M.-C., Weill, J.: Scorpion hemocyanin subunits: properties, dissociation, association. In: Structure and function of haemocyanin. Bannister, J.V. (ed.), pp. 37–49. Berlin, Heildelberg, New York: Springer 1977Google Scholar
  8. Loewe, R., Linzen, B.: Haemocyanins in spiders. I. Subunits and stability region ofDugesiella californica haemocyanin. Hoppe-Seyler's Z. Physiol. Chem.354, 182–188 (1973)Google Scholar
  9. Markl, J., Schmid, R., Czichos-Tiedt, S., Linzen, B.: Haemocyanins in spiders. III. Chemical and physical properties of the proteins inDugessiella andCupiennius blood. Hoppe-Seyler's Z. Physiol. Chem.357, 1713–1725 (1976)Google Scholar
  10. Markl, J., Markl, A., Hofer, A., Schartau, W., Linzen, B.: Heterogene Untereinheiten bei Arthropodenhämocyaninen. Verh. Dtsch. Zool. Ges.1978, 265 (1978)Google Scholar
  11. Maurer, R.: Disc-Elektrophorese. Berlin: de Gruyter 1968Google Scholar
  12. Melchers, M.: Zur Biologie und zum Verhalten vonCupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool. Jahrb. Abt. Syst. Ökol. Geogr. Tiere91, 1–90 (1963)Google Scholar
  13. Murray, A.C., Jeffrey, P.D.: Hemocyanin from the Australian freshwater crayfish,Cherax destructor. Subunit heterogeneity. Biochemistry13, 3667–3671 (1974)Google Scholar
  14. Roche, A.C., Monsigny, M.: Purification and properties of limulin: a lectin (agglutinin) from hemolymph ofLimulus polyphemus. Biochim. Biophys. Acta371, 242–254 (1974)Google Scholar
  15. Schneider, H.-J., Markl, J., Schartau, W., Linzen, B.: Hemocyanins in spiders. IV. Subunit heterogeneity ofEurypelma (Dugesiella) hemocyanin, and separation of polypeptide chains. Hoppe-Seyler's Z. Physiol. Chem.358, 1133–1141 (1977)Google Scholar
  16. Schutter, W.G., van Bruggen, E.F.J., Bonaventura, J., Bonaventura, C., Sullivan, B.: Structure, dissociation and reassembly ofLimulus polyphemus hemocyanin. In: Structure and function of haemocyanin. Bannister, J.V. (ed.), pp. 13–21. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  17. Sugita, H., Sekiguchi, K.: Heterogeneity of the minimum functional unit of the hemocyanins from the spider (Argiope bruennichii), the scorpion (Heterometrus sp.), and the Horseshoe Crab (Tachypleus tridentatus). J. Biochem. (Tokyo)78, 713–718 (1975)Google Scholar
  18. Sullivan, B., Bonaventura, J., Bonaventura, C.: Functional differences in the multiple hemocyanins of the Horseshoe, Crab,Limulus polyphemus L. Proc. Nat. Acad. Sci. USA71, 2558–2562 (1974)Google Scholar
  19. Sullivan, B., Bonaventura, J., Bonaventura, C., Godette, G.: Hemocyanin of the Horseshoe Crab,Limulus polyphemus. Structural differentiation of the isolated components. J. Biol. Chem.251, 7644–7648 (1976)Google Scholar
  20. Van Holde, K.E., van Bruggen, E.F.J.: The hemocyanins. In: Subunits in biological systems. Timasheff, S.N., Fasman, G.D., (eds.), pp. 1–53. New York: Marcel Dekker 1971Google Scholar

References

  1. Lamy, J., Lamy, J., Weill, J.: Arthropod hemocyanin structure: isolation of eight subunits in the scorption. Arch. Biochem. Biophys.192 (in press) (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. Markl
    • 1
  • A. Markl
    • 1
  • W. Schartau
    • 1
  • B. Linzen
    • 1
  1. 1.Zoologisches Institut der Universität MünchenMünchen 2Germany

Personalised recommendations