Acta Neuropathologica

, Volume 65, Issue 1, pp 69–76 | Cite as

A golgi analysis of unlayered polymicrogyria

  • I. Ferrer
Original Works


The cytoarchitectonics of the cerebral unlayered polymicrogyria located at the borders of a bilateral porencephalic defect is characterized by minute convolutions not exteriorized by sulci, in which blood vessels and increased numbers of fibrillary astrocytes are present in the fused molecular layers. The cellular organization, based on the analysis of Golgi sections, differs among gyral, intermediate, and sulcal regions and represents variable degree of cellular damage and structural organization of the cerebral mantle injured approximately in gestational month 5. Polymicrogyria may be produced by incomplete ischemia of radial territories vascularized by cortical blood vessels penetrating at right angles from the surface which is the result of the imbalance between the impaired cerebral blood flow of occluded large prerolandic arteries, responsible for the porencephalic defect, and the arterial meningeal anastomoses.

Abnormal folding in polymicrogyria may be generated by lateral differences in the cortical thickness of adjoining areas, and by the imbalance in growth rates of laterally contiguous cortical regions.

Key words

Unlayered polymicrogyria Cerebral convolutions Cortical malformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barron DH (1950) An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. J Exp Zool 113:553–573Google Scholar
  2. Bertrand I, Gruner J (1955) The status verrucosus of the cerebral cortex. J Neuropathol Exp Neurol 14:331–347Google Scholar
  3. Biclchowski M (1915) Uber Microgyrie. J Psychol Neurol (Lpz) 22:1–47Google Scholar
  4. Caviness VS, Jr (1976) Reeler mutant mice and laminar distribution of afferents in the neocortex. Exp Brain Res [Suppl] 1:267–273Google Scholar
  5. Caviness VS, Frost DD, Hayes NL (1976) Barrels in somatosensory cortex of normal and reeler mutant mice. Neursci Lett 3:7–14Google Scholar
  6. Caviness VS, Williams RS (1979) Cellular pathology of developing human cortex. In: Katzman R (ed) Congenital and acquired cognitive disorders. Raven Press, New York, pp 69–89Google Scholar
  7. Caviness VS, Yorke CH (1976) Interhemispheric neocortical connections of the corpus callosum in the reeler mutant mouse: A study based on anterograde and retrograde methods. J Comp Neurol 170:449–460Google Scholar
  8. Colwell SA (1976) Combined anterograde-retrograde tracing of the connections of the reeler mutant cortex. Anat Rec 184:380Google Scholar
  9. Crome L (1952) Microgyria. J Pathol Bacteriol 64:479–495Google Scholar
  10. Dekaban A (1965) Large defects in cerebral hemispheres associated with cortical dysgenesis. J Neuropathol Exp Neurol 24:512–530Google Scholar
  11. De Leon GA (1972) Observations on cerebral and cerebellar microgyria. Acta Neuropathol (Berl) 20:278–287Google Scholar
  12. Dobbing J, Sands J (1970) Timing of neuroblast multiplication in developing human brain. Nature 226:639–640Google Scholar
  13. Duckett S (1971) The establishment of internal vascularization in the human telencephalon. Acta Anat 80:107–113Google Scholar
  14. Dvorak K, Feit J, Jurankova Z (1978) Experimentally induced focal microgyria and status verrucosus deformis in rats. Pathogenesis and interrelations, histological and autoradiographic study. Acta Neuropathol (Berl) 44:121–129Google Scholar
  15. Ferrer I, Fernandez-Alvarez E (1977) Lisencefalia: Agiria. Un estudio con el método de Golgi. J Neurol Sci 34:109–120Google Scholar
  16. Ferrer I, Fabregues I, Coll J, Riblasta T, Rives A (1984a) Tuberous sclerosis: A Golgi study of cortical tuber. Clin Neuropathol 3:47–51Google Scholar
  17. Ferrer I, Xumetra A, Santamaria J (1984b) Cerebral malformation induced by prenatal X-irradiation: an autoradiographic and Golgi study. J Anat (Lond) 138:81–93Google Scholar
  18. Friede RL (1975) Development neuropathology. Springer, Wien, pp 303–307Google Scholar
  19. Hallervorden J, Meyer JE (1956) Cerebrale Kinderlähmung. In: Henke F, Lubarsch O, Rössle R (Hrsg) Handbuch der speziellen pathologischen Anatomie und Histologie, vol 13/14. Springer, Berlin, pp 194–282Google Scholar
  20. Hanaway J, Lee SI, Netsky MG (1968) Pachygyria: relation of findings to modern embryologic concepts. Neurology 18:791–799Google Scholar
  21. Huttenlocher PR, Wollmann RL (1980) The fine structure of cerebral cortex in tuberous sclerosis. A Golgi study. Ann Neurol 8:223Google Scholar
  22. Jacob H (1940) Die feinere Oberflächengestaltung der Hirnwindungen; die Hirnwarzenbildung und die Mikropolygyrie. Z Gesamte Neurol Psychiatrie 170:64–84Google Scholar
  23. Jellinger K, Rett A (1976) Agyria: Pachygyria (lissencephaly syndrome). Neuropadiatrie 7:66–91Google Scholar
  24. Jones EG, Valentino KL, Fleshman JW, Jr (1982) Adjustment of connectivity in rat neocortex after prenatal destruction of precursor cells of layers II–IV. Dev Brain Res 2:425–431Google Scholar
  25. Kier EL (1974) Fetal cerebral arteries: a phylogenic and ontogenic study. In: Newton TH, Potts DG (eds) Radiology of the skull and brain, vol 2, book 1. Mosby, St. Louis, pp 1089–1130Google Scholar
  26. Landrieu P, Goffinet A (1981) Inverte pyramidal neurons and their axons in the neocortex of reeler mutant mice. Cell Tissu Res 218:293–301Google Scholar
  27. Larroche JC (1977) Cytoarchitectonic abnormalities (abnormalities of cell migration) In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 30. North Holland, Amsterdam, pp 479–506Google Scholar
  28. Lyon G, Robain O (1967) Etude comparative des encéphalopathies circulatoires prénatales et para-natales (hydranencéphalies, porencephalies et encephalomalacies cystiques de la substance blanche). Acta Neuropathol (Berl) 9:79–98Google Scholar
  29. Marburg O, Rezek PHR, Marks MB (1945) Porencephaly. II. Studies in phlebothromobosis and phlebostasis. J Neuropathol Exp Neurol 4:43–58Google Scholar
  30. Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex. A Golgi study. I The sequential development of the cortical layers. Brain Res 23:167–183Google Scholar
  31. Marques Dias MJ, Harmant-van Rijckervorsel G, Landrieu P, Lyon G (1984) Prenatal cytomegalovirus disease and cerebral microgyria: Evidence for perfusion failure, not disturbance in histogenesis, as major cause of fetal cytomegalovirus encephalopathy. Neuropediatrics 15:18–24Google Scholar
  32. Pape KE, Wigglesworth JS (1979) Haemorrhage, ischaemia and the perinatal brain. In: Clinics in Developmental Medicine, nos 69/70. Heineman, London, pp 11–38Google Scholar
  33. Pinto-Lord MC, Evrard P, Caviness VS, Jr (1979) Determination of cell shape and orientation. A comparative Golgi analysis of cell-axon interelationships in the developing neocortex of normal and reeler mice. J Comp Neurol 187:49–70Google Scholar
  34. Poliakov GI (1967) Embryonal and postembryonal development of neurons of the human cerebral cortex. In: Hassler R, Stephen H (eds) Evolution of the forebrain, phylogenesis and ontogenesis of the forebrain. Plenum Press, New York, pp 249–258Google Scholar
  35. Ranke O (1910) Beiträge zur Kenntnis der normalen und pathologischen Hirnrindenbildung. Beitr Pathol Anat 47:51–125Google Scholar
  36. Richman DP, Stewart RM, Caviness VS, Jr (1974) Cerebral microgyria in a 27-week fetus. An architectonic and topographic analysis. J Neuropathol Exp Neurol 33:374–384Google Scholar
  37. Richman DP, Stewart RM, Hutchinson HW, Caviness VS, Jr (1975) Mechanical model of brain convolutional development. Science 189:18–21Google Scholar
  38. Shimada A, Abe Y, Yamato T, Ohta S, Yamazaki S, Okya N (1982) The pathogenesis of abnormal cytoarchitecture in the cerebral cortex and hippocampus of the mouse treated transplacentally with cytosine arabinoside. Acta Neuropathol (Berl) 58:159–167Google Scholar
  39. Sidman RL, Rakic P (1973) Neuronal migration with special reference to developing human brain. A review. Brain Res 62:1–35Google Scholar
  40. Solcher H (1968) Zur Neuroanatomie und Neuropathologie der Frühfetalzeit. Monogr Gesamt geb Neurol Psychiatr (Berl) 127:1–78Google Scholar
  41. Steindler DA (1976) Combined anterograde-retrograde tracing of the connections of reeler mouse cortex. Anat Res 184:540Google Scholar
  42. Steindler DA (1977) Cortical barrels, thalamic barreloids and trigemino-cerebellar projections in normal and reeler mutant mice. Anat Res 187:722–723Google Scholar
  43. Stewart RM, Richman DP, Caviness VS, Jr (1975) Lissencephaly and pachygyria. An architectonic and topographical analysis. Acta Neuropathol (Berl) 31:1–12Google Scholar
  44. Thalhammer O (1952) Mißbildung: Vorschlag zu einer neuen Nomenklatur angeborener Störungen. Arch Kinderheilkd 145:100–115Google Scholar
  45. Urich H (1976) Malformations of the nervous system, perinatal damage and related conditions in early life. In: Blackwood W, Corsellis JAN (eds) Greenfield's neuropathology. Edward Arnold, Edinburgh, pp 361–469Google Scholar
  46. Van der Eeken H (1968) Anatomy and embryology of cerebral circulation. Prog Brain Res 30:1–25Google Scholar
  47. Van der Eeken H, Adams RD (1953) The anatomy and functional significance of the meningeal arterial anastomoses of the human brain. J Neuropathol Exp Neurol 12:132–157Google Scholar
  48. Williams RS, Ferrante RJ, Caviness VS, Jr (1975) Neocortical organization in human cerebral malformations. A Golgi study. Neurosci Abstr 1:776Google Scholar
  49. Williams RS, Ferrante RJ, Caviness VS, Jr (1976) The cellular pathology of microgyria. A Golgi analysis. Acta Neuropathol (Berl) 36:269–283Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • I. Ferrer
    • 1
    • 2
  1. 1.Unidad de Neuropatología, Depto. de Anatomía PatológicaHospital “Principes de España”, Hospitalet de LlobregatBarcelonaSpain
  2. 2.Catedra de Anatomía PatológicaFacultad de Medicina Hospital ClínicoBarcelonaSpain

Personalised recommendations