Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 25, Issue 3, pp 210–212 | Cite as

Effect of etoposide (VP16-213) on lipid peroxidation and antioxidant status in a high-dose radiochemotherapy regimen

  • Claudia Ladner
  • Gerhard Ehninger
  • K. Fred Gey
  • Michael R. Clemens
Article

Summary

A total of 13 patients receiving bone marrow transplants (BMT) for treatment of different haematological diseases were investigated. Conditioning therapy preceding BMT consisted of fractionated total-body irradiation (12 Gy) and high-dose chemotherapy with cyclophosphamide (2±60 mg/kg). Patients stratified to be at high risk for relapse (6/13) were additionally treated with etoposide (30 mg/kg). Plasma concentrations of absolute and lipid-standardized antioxidants (α-tocopherol and β-carotene) decreased following conditioning therapy, presumably as the result of an enhanced breakdown of these antioxidants. Etoposide treatment did not amplify the loss of essential anti-oxidants but significantly increased lipid hydroperoxide concentrations in serum. We suggest that the abnormal generation of lipid hydroperoxides is the result of free radical formation.

Keywords

Etoposide Bone Marrow Transplant Lipid Hydroperoxide Haematological Disease Free Radical Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burton GW, Ingold K (1984) Beta-carotene: an unusual type of antioxidant. Science 224: 569–573Google Scholar
  2. 2.
    Burton GW, Joyce A, Ingold K (1982) First proof that vitamin E is a major lipid-soluble, chain-breaking antioxidant in human blood plasma. Lancet II: 327Google Scholar
  3. 3.
    Champlin RE, Gale RP (1984) The early complications of bone marrow transplantation. Semin Hematol 21: 101–108Google Scholar
  4. 4.
    Clemens MR, Remmer H, Waller HD (1984) Phenylhydrazine-induced lipid peroxidation of red blood cells in vitro and in vivo: monitoring by the production of volatile hydrocarbons. Biochem Pharmacol 33: 1715–1718Google Scholar
  5. 5.
    Clemens MR, Müh-Zange M, Werringloer J (1985) Phenylhydrazine inhibits lipid peroxidation of rat liver microsomes. IRCS Med Sci 13: 989–990Google Scholar
  6. 6.
    Clemens MR, Ladner C, Schmidt H, Ehninger G, Einsele H, Gey KF, Waller HD (1989) Decrease of alpha-tocopherol and beta-carotene by high-dose radiochemotherapy preceding bone marrow transplantation. Ann NY Acad Sci (in press)Google Scholar
  7. 7.
    Clemens MR, Ladner C, Ehninger G, Einsele H, Renn W, Bühler W, Gey KF, Waller HD (1989) Vitamin E and beta-carotene loss during radiochemotherapy preceding bone marrow transplantation. Am J Clin Nutr (in press)Google Scholar
  8. 8.
    El-Sadani M, Esterbauer H, El-Sayed M, Goher M, Nassar AY, Jürgens G (1989) A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res (in press)Google Scholar
  9. 9.
    Gey KF, Brubacher GB, Stähelin HB (1987) Plasma levels of antioxidant vitamins in relation to ischemic heart disease and cancer. Am J Clin Nutr 45: 1368–1377Google Scholar
  10. 10.
    Gurtoo HL, Hipkens JH, Sharma SD (1981) Role of glutathione in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. Cancer Res 41: 3584–3591Google Scholar
  11. 11.
    Katski AG, Kalyanaram B, Sinha BK (1987) Interaction of the antitumor drug, etoposide, with reduced thiols in vitro and in vivo. Chem Biol Interact 62: 237–247Google Scholar
  12. 12.
    Maanen JMS van, Ruiter C de, Koostra PR, Vries J de, Pinedo HM (1986) Free radical formation from the antineoplastic agent VP 16-213. Free Rad Res Commun 1: 263–272Google Scholar
  13. 13.
    Maanen JMS van, Verkerk UH, Broersen J, Lafleur MVM, Vries J de, Retèl J, Pinedo HM (1988) Semi-quinone formation from the catechol and ortho-quinone metabolites of the antineoplastic agent VP 16-213. Free Rad Res Commun 4: 371–384Google Scholar
  14. 14.
    Maanen JMS van, Lafleur MVM, Mans DRA, Akker E van den, Ruiter C de, Koostra PR, Pappie D, Vries J de, Retèl J, Pinedo HM (1988) Effects of the ortho-quinone and catechol of the antitumor drug VP 16-213 on the biological activity of single-standard and double-stranded O-X174 DNA. Biochem Pharmacol 37: 3579–3589Google Scholar
  15. 15.
    National Research Council, Food and Nutrition Board (1980) Recommended dietary allowances, 9th rev ed. National Academy, Washington DCGoogle Scholar
  16. 16.
    Sinha BK, Trush MA (1983) Free radical metabolism of VP 16-213 and inhibition of anthracyclin-induced lipid peroxidation. Biochem Pharmacol 32: 3495–3498Google Scholar
  17. 17.
    Sinha BK, Trush MA, Kalyanaraman B (1985) Microsomal interactions and inhibition of lipid peroxidation by etoposide (VP 16-213): implication for mode of action. Biochem Pharmacol 34: 2036–2040Google Scholar
  18. 18.
    Teicher BA, Holden SA, Rose CM (1985) Effect of oxygen on the cytotoxicity and antitumor activity of etoposide. J Natl Cancer Inst 75: 1129–1133Google Scholar
  19. 19.
    Vuilleumier JP, Keller HE, Gysel D, Hunziker F (1983) Clinical chemical methods for the routine assessment of the vitamin status in human populations. Int J Vitam Nutr Res 53: 265–272Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Claudia Ladner
    • 1
  • Gerhard Ehninger
    • 1
  • K. Fred Gey
    • 2
  • Michael R. Clemens
    • 1
  1. 1.Medizinische Klinik und PoliklinikFberhard-Karls Universität TübingenTübingen 1FRG
  2. 2.Vitamin Research DepartmentF. Hoffmann-La Roche Comp.BaselSwitzerland

Personalised recommendations