Archives of Microbiology

, Volume 117, Issue 1, pp 89–92

Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen

  • Jeremy W. Abram
  • David B. Nedwell
Article

Abstract

A methanogenic bacterial consortium was obtained after inoculation of benzoate medium under N2/CO2 atmosphere with intertidal sediment. A hydrogen donating organotroph andMethanococcus mazei were isolated from this enrichment. H2-utilising sulphate reducing bacteria were isolated under H2/CO2 in the absence of organic electron donors. TheMethanococcus was able to produce methane in yeast extract medium under N2/CO2 if the H2 donating organism was present, and sulphate reduction occurred if the hydrogen utilising sulphate reducing bacteria were grown with the H2 donating organism. The ability of the H2 utilising sulphate reducing bacteria to inhibitMethanococcus competitively was shown in cultures containing both of these H2 utilising bacteria.

Key words

H2-transfer Sulphate reducing bacteria Methanogenic bacteria Sediments Competitive inhibition Methanococcus 

Abbreviations

HDO

hydrogen donating organism

SRB

sulphate reducing bacteria

HSRB

hydrogen utilising sulphate reducing bacteria

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, G. R., LeGall, J., Peck, H. D.: Evidence for the periplasmic location of hydrogenase inDesulfovibrio gigas. J. Bacteriol.120, 994–997 (1974)Google Scholar
  2. Bryant, M. P., Campbell, L. L., Ready, C. A., Crabill, M. R.: Growth ofDesulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Env. Microbiol.33, 1162–1169 (1977)Google Scholar
  3. Bryant, M. P., Wolin, M. J.: Rumen bacteria and their metabolic interaction. Proceedings of the first intersectional congress of the International Assoc. Soc., Vol. 2, Developmental Microbiology, Ecology, pp. 297–306. Tokyo: Science Council of Japan 1975Google Scholar
  4. Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfem, R. S.:Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol.59, 20–31 (1967)Google Scholar
  5. Buchanan, R. E., Gibbons, N. E. (eds.) Bergey's manual of determinative bacteriology, 8th ed. Baltimore: Williams and Wilkins 1974Google Scholar
  6. Cappenberg, Th. E.: Interrelations between sulfate-reducing and methane producing bacteria in bottom deposits of a freshwater lake. 1. Field observations. Antonie van Leeuwenhoek. J Mikrobiol. Serol.40, 285–295 (1974)Google Scholar
  7. Cappenberg, Th. E.: Relationships between sulfate-reducing and methane producing bacteria. Plant Soil43, 123–139 (1975)Google Scholar
  8. Ferry, J. G., Wolfe, R. S.: Anaerobic degradation of benzoate to methane by a microbial consortium. Arch. Microbiol.107, 33–40 (1976)Google Scholar
  9. Hungate, R. E.: A roll-tube method for cultivation of strict anaerobes. In: Methods in Microbiology (J. R. Norris, D. W. Ribbons, eds.), Vol. 3B, pp. 117–132. New York: Academic Press 1969Google Scholar
  10. Iannotti, E. L., Kafkewitz, D., Wolin, M. J., Bryant, M. P.: Glucose fermentation products ofRuminococcus albus grown in continuous culture, withVibrio succinogenes: Changes caused by interspecies transfer of H2. J. Bacteriol.114, 1231–1240 (1973)Google Scholar
  11. Khosrovi, B., Macpherson, R., Miller, J. D. A.: Some observations of growth and hydrogen uptake byDesulfovibrio vulgaris. Arch. Mikrobiol.80, 324–337 (1971)Google Scholar
  12. Martens, C. S., Berner, R. A.: Methane production in the interstitial waters of sulfate-depleted marine sediments. Science185, 1167–1169 (1974)Google Scholar
  13. Postgate, J. R.: On the nutrition ofDesulphovibrio desulphuricans. A correction. J. Gen Microbiol.9, 440–444 (1953)Google Scholar
  14. Postgate, J. R.: Versatile medium for the enumeration of sulphate reducing bacteria. Appl. Microbiol.11, 265–267 (1963)Google Scholar
  15. Postgate, J. R.: Recent advances in the study of sulfate reducing bacteria. Bact. Rev.29, 425–441 (1965)Google Scholar
  16. Scheifinger, C. C., Lineham, B., Wolin, M. J.: H2 production bySelenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl. Microbiol.29, 480–483 (1975)Google Scholar
  17. Sorokin, Y. I.: Experimental, investigation of bacterial sulfate reduction in the Black Sea. Microbiology32, 320–335 (1962)Google Scholar
  18. Sorokin, Y. I.: Role of carbon dioxide and acetate in biosynthesis by sulphate reducing bacteria. Nature (London)210, 551–552 (1966)Google Scholar
  19. Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bact. Rev.41, 100–180 (1977)Google Scholar
  20. Thorstenson, D. C.: Equilibrium distribution of small organic molecules in natural waters. Geochim. Cosmochim. Acta34, 745–770 (1970)Google Scholar
  21. Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Formation of methane by bacterial extracts. J. Biol. Chem.238, 2882–2886 (1963)Google Scholar
  22. Winfrey, M. R., Zeikus, J. G.: Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Env. Microbiol.33, 275–281 (1977)Google Scholar
  23. Zeikus, J. G., Weimer, P. J., Nelson, D. R., Daniels, L.: Bacterial methanogenesis: Acetate as a methane precursor in pure culture. Arch. Microbiol.104, 129–134 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Jeremy W. Abram
    • 1
  • David B. Nedwell
    • 1
  1. 1.Department of BiologyUniversity of EssexColchesterEngland

Personalised recommendations