Archives of Microbiology

, Volume 117, Issue 1, pp 9–16 | Cite as

Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria

  • Hanno Biebl
  • Norbert Pfennig


1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight yields were obtained as calculated for the complete utilization of the ethanol by the mixed cultures. 3. Dry weight yield determinations for two pure cultures ofChlorobium limicola with different growth limiting amounts of sulfide in the absence and presence of excess acetate confirmed that acetate is incorporated byChlorobium in a fixed proportion to sulfide; compared to the yield in the absence of acetate the yield is increased two to threefold in the presence of acetate. 4. The lowest possible sulfide concentrations necessary for optimal growth of mixed cultures of eitherProsthecochloris orChlorobium withDesulfuromonas on acetate were 7–8 mg H2S per liter of medium. 5. Doubling times at the growth rate limiting light intensities of 5, 10, 20, 50, 100 and 200 lux were determined under optimal growth conditions for the following phototrophic bacteria:Prosthecochloris aestuarii, Chlorobium phaeovibriodes, Chromatium vinosum andRhodopseudomonas capsulata. Reasonably good growth was still obtained withProsthecochloris at 10 and 5 lux light intensity at which no growth of the purple bacteria could be observed.

Key words

Green sulfur bacteria Chlorobium limicola Prosthecochloris aestuarii Desulfuromonas acetoxidans Desulfovibrio species Purple bacteria Syntrophic mixed cultures Growth vields Light limitation Acetate Ethanol Propanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Butlin, K. R., Postgate, J. R.: The microbial formation of sulfur in Cyrenaican lakes. In: Biology of deserts (J. L. Cloudsley-Thompson, ed.), pp. 112–122. London: Institute of Biology 1954Google Scholar
  2. Caldwell, D. E., Tiedje, J. M.: The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can. J. Microbiol.21, 377–385 (1975)Google Scholar
  3. Cohen, Y.: Dynamics of procaryotic photosynthetic communities of the Solar Lake. Thesis, Hebrew University Jerusalem 1975Google Scholar
  4. Cohen-Bazire, G., Pfennig, N., Kunisawa, R.: The fine structure of green bacteria. J. Cell. Biol.22, 207–225 (1964)Google Scholar
  5. Cruden, D., Stanier, R. Y.: The characterization ofChlorobium vesicles and membranes isolated from green bacteria. Arch. Mikrobiol.72, 115–134 (1970)Google Scholar
  6. Gloe, A., Pfennig, N., Brockmann, H., Jr., Trowitzsch, W.: A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch. Microbiol.102, 103–109 (1975)Google Scholar
  7. Van Dijken, J. P., Harder, W.: Growth yields of microorganisms on methanol and methane: a theoretical study. Biotechnol. Bioeng.17, 15–30 (1975)Google Scholar
  8. Fenchel, T.: The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem. Ophelia6, 1–182 (1969)Google Scholar
  9. Van Gemerden, H.: On the bacterial sulfur cycle of inland waters. Thesis, Univ. of Leiden (1967)Google Scholar
  10. Gorlenko, V. M., Kusnezow, S. I.: Über die photosynthetisierenden Bakterien des Kononjer Sees. Arch. Hydrobiol.70, 1–13 (1972)Google Scholar
  11. Jørgensen, B. B., Fenchel, T.: The sulfur cycle of a marine sediment model system. Mar. Biol.24, 189–201 (1974)Google Scholar
  12. Matheron, R., Baulaigue, R.: Bactéries fermentatives, sulfate-reductrices et phototrophes sulfureuses en cultures mixtes. Arch. Microbiol.109, 319–320 (1976)Google Scholar
  13. Oláh, J., Biebl, H., Overbeck, J.: Photoorganotrophic acetate utilization in a stratified eutrophic lake. Hidrol. Kőzl.1973, 21–27 (1973)Google Scholar
  14. Olson, J. M., Prince, R. C., Brüne, D. C.: Abstracts Int. conference on the primary electron transport and energy transduction in photosynthetic bacteria. Free University of Brussels. Brussels, Belgium, Sept. 6–9 (1976)Google Scholar
  15. Pfennig, N.: Photosynthetic bacteria. Ann. Rev. Microbiol.21, 285–324 (1967)Google Scholar
  16. Pfennig, N.:Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J. Bacteriol.99, 597–602 (1969)Google Scholar
  17. Pfennig, N., Biebl, H.:Desulfuromonas acetoxidans, gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol.110, 3–12 (1976)Google Scholar
  18. Pfennig, N., Lippert, K.-D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol.55, 245–256 (1966)Google Scholar
  19. Sadler, W. R., Stanier, R. Y.: The function of acetate in photosynthesis by green bacteria. Proc. Natl Acad. Sci. U.S.46, 1328–1334 (1960)Google Scholar
  20. Trüper, H. G., Schlegel, H. G.: Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements in growing cells ofChromatium okenii. Antonie van Leeuwenhoek. J. Microbiol. Serol.30, 225–238 (1964)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Hanno Biebl
    • 1
  • Norbert Pfennig
    • 1
  1. 1.Institut für Mikrobiologie der Gesellschaft für Strahlen- und Umweltforschung mbHGöttingenGermany

Personalised recommendations