Journal of comparative physiology

, Volume 148, Issue 1, pp 65–76 | Cite as

Colonial thermoregulation in honey bees (Apis mellifera)

  • Fredi Kronenberg
  • H. Craig Heller


  1. 1.

    Populations of honey bees held at a constant temperature for 24–48 h exhibited diurnal rhythms of metabolic rate (MR) and locomotor activity with peaks during the day and lows at night. The amplitude of the metabolic rhythm decreased as air temperature (Tin) increased.

  2. 2.

    Thermoregulatory behaviors including clustering and fanning occurred in cycles which correlated with the diurnal rhythms of MR and activity.

  3. 3.

    At cold air temperature (10°C), a high rate of thermoregulatory heat production was independent of visible activity, and conversely, at high air temperatures (40°C), MR was low despite increased locomotor activity.

  4. 4.

    Decreasing air temperature from 30 to 10°C day and night resulted in clustering, and metabolic increases proportional to the degree of cooling. Raising air temperature from 30 to 40°C day and night caused a drop in metabolic rate, an increase in locomotor activity, and fanning.

  5. 5.

    Day/night differences in thermoregulatory responses to cooling included a nocturnal reduction of the threshold air temperature for thermogenesis and a decrease in the slopes of the metabolic response curves below this threshold. At 10°C there was more clustering at night than during the day.

  6. 6.

    The presence of capped brood moderates these responses in a quantitative manner, as indicated by the greater metabolic rate when the bee/brood ratio is small and the greater amount of clustering on brood comb than on broodless comb.

  7. 7.

    At cold air temperatures (10°C), capped brood temperature is maintained above 30°C through the combined effects of clustering and thermogenesis. The metabolic responses are inversely correlated with the degree of clustering.



Metabolic Rate Locomotor Activity Diurnal Rhythm Increase Locomotor Activity Thermoregulatory Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



metabolic rate


air temperature


environmental chamber temperature


air temperature in isolated bee chamber


thoracic temperature


temperature beneath surface of capped brood


temperature near bottom of uncapped larval cell


honey temperature


temperature of heat exchange plate

Tmid air

air temperature 0.5–1.0 cm above comb surface at center of frame


constant light


natural light/dark cycle


low activity


moderate activity


high activity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen MD (1959) Respiration rates of worker honeybees of differeent ages and at different temperatures. J Exp Biol 36:92–101Google Scholar
  2. Bastian J, Esch H (1970) The nervous control of the indirect flight muscles of the honey bee. Z Vergl Physiol 67:307–324Google Scholar
  3. Büdel A (1968) La microclimat de la ruche. In: Chauvin R (ed) Traité de biologie de L'Abeille, vol 4. Masson, Paris, pp 1–53Google Scholar
  4. Corkins CL, Gilbert CS (1932) The metabolism of honeybees in winter cluster. Bull Wyo Agric Exp Sta 187:1–30Google Scholar
  5. Esch H (1960) Über die Körpertemperaturen und den Wärmehaushalt vonApis mellifera. Z Vergl Physiol 43:305–335Google Scholar
  6. Esch H (1976) Body temperature and flight performance of honey bees in a servomechanically controlled wind tunnel. J Comp Physiol 109:265–277Google Scholar
  7. Esch H, Bastian J (1968) Mechanical and electrical activity in the indirect flight muscles of the honey bee. Z Vergl Physiol 58:429–440Google Scholar
  8. Free JB (1960) The distribution of bees in a honey-bee (Apis mellifera L.) colony. Proc R Entomol Soc Lond [A] 35:141–144Google Scholar
  9. Free JB, Simpson J (1963) The respiratory metabolism of honeybee colonies at low temperatures. Entomol Exp Appl 6:234–238Google Scholar
  10. Free JB, Spencer-Booth Y (1960) Chill-coma and cold death temperatures ofApis mellifera. Entomol Exp Appl 3:222–230Google Scholar
  11. Gates BN (1914) The temperature of the bee colony. Bull US Dept Agric 96:1–29Google Scholar
  12. Hazelhoff EH (1954) Ventilation in a bee-hive during summer. Physiol Comp Oecol 3:343–364Google Scholar
  13. Heinrich B, Kammer AE (1973) Activation of the fibrillar muscles in the bumblebee during warm-up, stabilization of thoracic temperature and flight. J Exp Biol 58:677–688Google Scholar
  14. Helversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–474Google Scholar
  15. Hess WR (1926) Die Temperaturregulierung im Bienenvolk. Z Vergl Physiol 4:465–487Google Scholar
  16. Heusner A, Stussi T (1964) Metabolisme énergétique de l'abeille isolée: son role dans la thermoregulation de la ruche. Insectes Soc 11:239–266Google Scholar
  17. Himmer A (1926) Der soziale Wärmehaushalt der Honigbiene. I. Die Wärme im nicht-brütenden Wintervolk. Erlanger Jahrb Bienenkd 4:1–51Google Scholar
  18. Himmer A (1927) Der soziale Wärmehaushalt der Honigbiene. II. Die Wärme der Bienenbrut. Erlanger Jahrb Bienkd 5:1–32Google Scholar
  19. Himmer A (1932) Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol Rev 7:224–253Google Scholar
  20. Jay SC (1963) The development of honeybees in their cells. J Apic Res 2:117–134Google Scholar
  21. Kammer AE, Heinrich B (1974) Metabolic rates related to muscle activity in bumblebees. J Exp Biol 61:219–227Google Scholar
  22. Koeniger N (1975) Experimentelle Untersuchung über das Wärmen der Brut beiVespa crabo undApis mellifica. Verh Dtsch Zool Ges 1975:148 (Abstr)Google Scholar
  23. Koeniger N (1978) Das Wärmen der Brut bei der Honigbiene (Apis mellifera L.). Apidologie 9:305–320Google Scholar
  24. Kronenberg F (1979) Colonial thermoregulation in honey bees. Doctoral thesis, Stanford University, Stanford, CAGoogle Scholar
  25. Lavie P (1954) L'enregistrement thermique continu dans les populations d' “Apis mellifica” au cours de l'hivernage. Insectes Soc 1:39–48Google Scholar
  26. Lensky Y (1964) Résistance des abeilles (Apis mellifica L. var.ligustica) à des températures elevées. Insectes Soc 11:293–299Google Scholar
  27. Lindauer M (1955) The water ecotomy and temperature regulation of the honeybee colony. Bee World 36:62–72; 81–92; 105–111Google Scholar
  28. Melampy RM, Willis ER (1939) Respiratory metabolism during larval and pupal development of the female honeybee. Physiol Zool 12:302–311Google Scholar
  29. Morrison PR, Ryser FA, Dawe GR (1959) Studies on the physiology of the masked shrewSorex cinereus. Physiol Zool 32:256–271Google Scholar
  30. Owens CD (1971) The thermology of wintering honey bee colonies. US Dep Agric Agric Res Serv Tech Bull 1429:1–32Google Scholar
  31. Phillips EF, Demuth GS (1915) Outdoor wintering of bees. US Dep Agric Farmers Bull 695:1–12Google Scholar
  32. Ritter W (1978) Der Einfluß der Brut auf die Änderung der Wärmebildung in Bienenvölkern (Apis mellifera carnica). Verh Dtsch Zool Ges 1978:220 (Abstr.)Google Scholar
  33. Ritter W, Koeniger N (1977) Influence of the brood on the thermoregulation of honeybee colonies. Proc VIII Congr IUSSI, Wageningen, pp 283–284Google Scholar
  34. Stussi T (1968) Variations nycthémérales de la consommation d'oxygène d'abeilles isolées et d'abeilles in groupes de 2 et de 10 placées at 15°C. In: C.N.R.S. (ed) Colloques internationaux du C.N.R.S., no 173, L'effect de groupe chez les animaux. Paris, C.N.R.S., pp 41–60Google Scholar
  35. Stussi T (1972) L'heterothermie de l'abeille. Arch Sci Physiol 26:131–159Google Scholar
  36. Stussi T, Harmelin ML (1966) Evolution saisonnière de la thermogenése de l'abeille. CR Séanc Soc Biol 160:1503–1506Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Fredi Kronenberg
    • 1
  • H. Craig Heller
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations