Journal of comparative physiology

, Volume 146, Issue 1, pp 35–40 | Cite as

Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption

  • Angelika Neukirch


The life span of worker-honeybees is determined by the duration of the hive-period and of the foraging period (Figs. 1,2). The duration of the forgaing period is regulated in the following way: Total flight performance of the individual bee seems to be fixed. Daily flight performance strongly affects total flight duration. High daily flight performance decreases maximal flight duration and vice versa.

Foragers accumulate the highest glycogen reserves in the flight muscles compared to other stages (Figs. 3, 4). They use these reserves to overcome starvation or when growing old. Young foragers are able to restore glycogen reserves after sugar intake, whereas old foragers were found to have a reduced glycogen synthesizing ability (Fig. 5).

The results indicate that bees exhaust their energysupplying mechanisms after a definite total flight performance.


Sugar Energy Consumption Human Physiology Life Span Sugar Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelman RC (1971) Age-dependent effects in enzyme induction — a biochemical expression of aging. Exp Gerontol 6:75–87Google Scholar
  2. Bulos B, Shukla S, Sacktor B (1972) Bioenergetic properties of mitochondria from flight muscle of aging blowflies. Arch Biochem Biophys 149:461–469Google Scholar
  3. Burcombe JV (1972) Changes in enzyme levels during ageing inDrosophila melanogaster. Mech Ageing Dev 1:213–225Google Scholar
  4. Free JB, Spencer-Booth Y (1959) The longevity of worker honeybees. Proc R Entomol Soc (A) 34:10–12Google Scholar
  5. Frisch K von (1923) Über die “Sprache” der Bienen, eine tierpsychologische Untersuchung. Zool Jahrb Abt Allg Zool Physiol 40:1–186Google Scholar
  6. Jaycox ER, Skowronek W, Guynn G (1974) Behavioral changes in worker honeybees (Apis mellifica) induced by injections of a juvenile hormone mimic. Ann Entomol Soc Am 67:529–534Google Scholar
  7. Jeffree EP, Allen MD (1957) The annual cycle of pollen storage by honeybees. J Econ Entomol 50:211–212Google Scholar
  8. John M (1958) Über den Gesamtkohlenhydrat- und Glycogengehalt der Bienen. Z Vergl Physiol 41:204–220Google Scholar
  9. Johnson BG, Rowley WA (1972) Ultrastructural changes inCulex tarsalis flight muscle associated with exhaustive flight. J Insect Physiol 18:2391–2399Google Scholar
  10. Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z Vergl Physiol 34:299–345Google Scholar
  11. Lundie AE (1925) The flight activity of the honeybee. US Dep Agricult Bull 1328:1–37Google Scholar
  12. Martin U, Martin H, Lindauer M (1978) Transplantation of a time-signal in honeybees. J Comp Physiol 124:193–201Google Scholar
  13. Maurizio A (1950) Untersuchungen über den Einfluß der Pollennahrung und Brutpflege auf die Lebensdauer und den physiologischen Zustand der Bienen. Schweiz Bienenzg 73:58–65Google Scholar
  14. Miquel J (1971) Aging of maleDrosophila melanogaster: Histological, histochemical and ultrastructural observations. Adv Gerontol Res 3:39–70Google Scholar
  15. Nayar JK, Handel E van (1971) The fuel for sustained mosquito flight. J Insect Physiol 17:471–481Google Scholar
  16. Ragland SS, Sohal RS (1975) Ambient temperature, physical activity and aging in the house fly,Musca domestica. Exp Gerontol 10:279–290Google Scholar
  17. Rockstein M (1950) Glycogen metabolism in insects: a review. Bull Brooklyn Entomol Soc 45:74–81Google Scholar
  18. Rockstein M (1972) The role of molecular genetic mechanisms in the aging process. In: Rockstein M, Baker GT III (eds) Molecular genetic mechanisms in development and aging. Academic Press, New York, pp 1–10Google Scholar
  19. Roe JH, Dailey RE (1966) Determination of glycogen with the anthrone reagent. Anal Biochem 15:245–250Google Scholar
  20. Rowley WA, Graham CL (1968) The effect of age on the flight performance of femaleAedes aegypti mosquitoes. J Insect Physiol 14:719–728Google Scholar
  21. Rutz W, Imboden H, Jaycox ER, Wille H, Gerig L, Lüscher M (1977) Juvenile hormone and polyethism in adult worker honeybees (Apis mellifica). Proc 8th Int Congr IUSSI, WageningenGoogle Scholar
  22. Sachs L (1973) Angewandte Statistik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Sacktor B (1970) Regulation of intermediary metabolism, with special reference to the control mechanisms in insect flight muscle. Adv Insect Physiol 7:267–347Google Scholar
  24. Sohal RS (1976) Metabolic rate and life span. In: Cutler RG (ed) Cellular ageing, part I, vol 9, Interdisciplinary topics in gerontology. Karger, Basel, pp 25–40Google Scholar
  25. Tribe MA (1967) Age related changes in the respiratory physiology of flight muscle tissues from the blowfly,Calliphora erythrocephala. Exp Gerontol 2:113–121Google Scholar
  26. Tribe MA (1972) Biochemical and structural variations in the flight muscle mitochondria of ageing blowflies,Calliphora erythrocephala. J Cell Sci 10:443–469Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Angelika Neukirch
    • 1
  1. 1.Zoologisches Institut II der Universität WürzburgWürzburgGermany

Personalised recommendations