Applied Physics B

, Volume 33, Issue 3, pp 179–185 | Cite as

Dye-laser frequency stabilization using optical resonators

  • J. Hough
  • D. Hils
  • M. D. Rayman
  • Ma L. -S. 
  • L. Hollberg
  • J. L. Hall
Contributed Papers

Abstract

We describe a study, performed using heterodyne techniques, of the frequency fluctuations of two completely independent ring dye lasers locked to independent reference cavities. Single laser linewidths of less than 750 Hz were achieved, the principal limitation being residual vibrations from the noisy laboratory environment. With future design and environmental improvements, ultranarrow linewidths are expected thus providing a useful tool for a great variety of high precision experiments.

PACS

06 07.60 42.60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Hall, T. Baer, L. Hollberg, H.G. Robinson:Laser Spectroscopy V, ed. by A.R.W. McKeller, T. Oka, and B.P. Stoicheff. Springer Ser. Opt. Sci.30, (Springer, Berlin, Heidelberg, New York 1981) pp. 15–24Google Scholar
  2. 2.
    R.W.P. Drever, J. Hough, A.J. Munley, S.A. Lee, R. Spero, S.E. Whitcomb, H. Ward, G.M. Ford, M. Hereld, N.A. Robertson, I. Kerr, J.R. Pugh, G.P. Newton, B. Meers, E.D. Brocks III, Y. Gursel: ibidGoogle Scholar
  3. 3.
    K. Maischberger, A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing: ibidGoogle Scholar
  4. 4.
    J.E. Faller, P.L. Bender, Y.M. Chan, J.L. Hall, D. Hils, J. Hough:10th Intern. Conf. on General Relativity and Gravitation —Contributed Papers, Vol. 2, ed. by B. Bertotti, F. de Felice, and A. Pascolini (Consiglio Nazionale della Ricerche, Rome, 1983) pp. 960–962Google Scholar
  5. 5.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward: Appl. Phys. B31, 97–105 (1983)Google Scholar
  6. 6.
    J. Helmcke, S.A. Lee, J.L. Hall: Appl. Opt.21, 1686–1694 (1982)Google Scholar
  7. 7.
    J.L. Hall, S.A. Lee: Appl. Phys. Lett.29, 367–369 (1976)Google Scholar
  8. 8.
    D.W. Allan: Proc. IEEE54, 221–230 (1966)Google Scholar
  9. 9.
    The Allan variance for no dead time andN=2 may be expressed as\(\sigma (\tau ) = \frac{1}{{v_0 }}\left[ {\frac{1}{{2(M - 1)}}\sum\limits_{i = 1}^{M - 1} {(v_{i + 1} - v_i )^2 } } \right]^{1/2} ,\) where υ0 is the mean optical frequency,M is the number of immediately successive frequency measurements, and υi is thei tb heterodyne frequency measurement after counting during an interval τGoogle Scholar
  10. 10.
    D.W. Allan, J.H. Shoaf, D. Halford:Time and Frequency: Theory and Fundamentals, NBS Monograph 140Google Scholar
  11. 11.
    L. Hollberg, J.L. Hall: To be publishedGoogle Scholar
  12. 12.
    D.S. Elliott, Rajarshi Roy, S.J. Smith: Phys. Rev. A26, 12–18 (1982)Google Scholar
  13. 13.
    A. Brillet, J.L. Hall: Phys. Rev. Lett.42, 549–552 (1979)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. Hough
    • 1
  • D. Hils
    • 1
  • M. D. Rayman
    • 1
  • Ma L. -S. 
    • 1
  • L. Hollberg
    • 1
  • J. L. Hall
    • 1
  1. 1.Joint Institute for Laboratory AstrophysicsUniversity of Colorado and National Bureau of StandardsBonlderUSA

Personalised recommendations