Acta Neuropathologica

, Volume 67, Issue 3–4, pp 279–288 | Cite as

The dentate gyrus in hypoglycemia: Pathology implicating excititoxin-mediated neuronal necrosis

  • R. Auer
  • H. Kalimo
  • Y. Olsson
  • T. Wieloch
Original Works


A detailed light- and electron-microscopic study of the damage to the rat dentate gyrus in hypoglycemia was undertaken, in view of the previously advanced hypothesis that hypoglycemic nerve cell injury is mediated by a released neurotoxin. The distribution of neuronal necrosis showed a relationship to the subarachnoid cisterns.

Electron microscopy of the dentate granule cells and their apical dendrites revealed dendrosomal, axon-sparing neuronal pathology. Dentate granule cells were affected first in the dendrites in the outer layer of the stratum moleculare, sparing axons of passage and terminal boutons. Subsequently, the neuronal perikarya were affected, and Wallerian degeneration of axons followed. Cell membrane abnormalities preceded the appearance of mitochondrial flocculent densities and degradation of the cytoskeleton, and are suggested to be early lethal changes.

The observed early dendrotoxic changes, and the dendrosomal, axon-sparing nature of the lesion implicate an excitotoxin-mediated neuronal necrosis in hypoglycemia.

Key words

Dentate Hypoglycemia Excitotoxin Dendrites Neuronal necrosis Membrane breaks Cerebrospinal fluid (CSF) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agardh C-D, Folbergrová J, Siesjö BK (1978) Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem 31:1135–1142Google Scholar
  2. 2.
    Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914Google Scholar
  3. 3.
    Andersen P, Bliss TVP, Skede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13:222–238Google Scholar
  4. 4.
    Auer RN, Olsson Y, Siesjö BK (1984) Hypoglycemic brain injury in the rat: Correlation of density of brain damage with the EEG isoelectric time. A quantitative study. Diabetes 33:1090–1098Google Scholar
  5. 5.
    Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984) The distribution of hypoglycemic brain damage. Acta Neuropathol (Berl) 64:177–191Google Scholar
  6. 6.
    Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. I. Light and electron microscopic findings in the rat cerebral cortex. Acta Neuropathol (Berl) 67:13–24Google Scholar
  7. 7.
    Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. II. Light-and electron-microscopic findings in the hippocampal gyrus of the rat. Acta Neuropathol (Berl) 67:25–36Google Scholar
  8. 8.
    Blackstad TW, Brink K, Hem J, Jeune B (1970) Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J Comp Neurol 138:433–450Google Scholar
  9. 9.
    Brierley JB (1976) Cerebral hypoxia. In: Blackwood W, Corsellis JAN (eds) Greenfields neuropathology, 3rd ed, chapt 2 Arnold, London, pp 43–85Google Scholar
  10. 10.
    Coyle P (1978) Spatial features of the rat hippocampal vascular system. Exp Neurol 58:549–561Google Scholar
  11. 11.
    Erzurumlu RS, Rose G, Lynch GS, Killackey HP (1981) Selective uptake and anterograde transport of horseradish peroxidase by hippocampal granule cells. Neuroscience 6:897–902Google Scholar
  12. 12.
    Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. I. Terminal area related to number of granule and pyramidal cells. J Comp Neurol 178:49–72Google Scholar
  13. 13.
    Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. II. Experimental analysis of fiber distribution with silver impregnation methods. J Comp Neurol 178:73–88Google Scholar
  14. 14.
    Gaarskjaer FB (1981) The hippocampal mossy fiber system of the rat studied with retrograde tracing techniques. Correlation between topographic organization and neurogenetic gradients. J Comp Neurol 203:717–735Google Scholar
  15. 15.
    Garcia JH, Lossinsky AS, Kauffman FC, Conger KA (1978) Neuronal ischemic injury: light microscopy, ultrastructure, and biochemistry. Acta Neuropathol (Berl) 43:85–95Google Scholar
  16. 16.
    Herndon RM, Coyle JT, Addicks E (1980) Ultrastructural analysis of kainic acid lesion to cerebellar cortex. Neuroscience 5:1015–1026Google Scholar
  17. 17.
    Hjorth-Simonsen A, Jeune B (1972) Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144:215–232Google Scholar
  18. 18.
    Hjorth-Simonsen A (1972) Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J Comp Neurol 146:219–232Google Scholar
  19. 19.
    Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325Google Scholar
  20. 20.
    Jennings RB, Shen AC, Hill ML, Ganote CE, Herdson PB (1978) Mitochondrial matrix densities in myocardial ischemia and autolysis. Exp Mol Pathol 29:55–65Google Scholar
  21. 21.
    Johansen FF, Jørgensen MB, von Lubitz DKJE, Diemer NH (1984) Selective dendrite damage in hippocampal CA1 stratum radiatum with unchanged axon ultrastructure and glutamate uptake after transient cerebral ischemia in the rat. Brain Res 291:373–377Google Scholar
  22. 22.
    Jones EL, Smith WT (1971) Hypoglycaemic brain damage in the neonatal rat. In: Brierley JB, Meldrum BS (eds) Brain hypoxia, chapt 23. Heinemann, London, pp 231–241Google Scholar
  23. 23.
    Kalimo H, Garcia JH, Kamijyo Y, Tanaka J, Trump BF (1977) The ultrastructure of brain death II. Electron microscopy of feline cortex after complete ischemia. Virchows Arch [Cell Pathol] 25:207–220Google Scholar
  24. 24.
    Kalimo H, Auer RN, Olsson Y, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. III. Light- and electron-microscopic findings in the rat caudoputamen. Acta Neuropathol (Berl) 67:37–50Google Scholar
  25. 25.
    Kastein GW (1938) Insulinvergiftung. II. Neurologische und anatomisch-histologische Beschreibung. Z Ges Neurol Psychiatr 163:342–361Google Scholar
  26. 26.
    Lee JC, Olszewski J (1960) Penetration of radioactive bovine albumin from cerebrospinal fluid into brain tissue. Neurology 10:814–822Google Scholar
  27. 27.
    Monaghan DT, Holets VR, Toy DW, Cotman CW (1983) Anatomical distributions of four pharmacologically distinct3H-l-glutamate binding sites. Nature 306:176–179Google Scholar
  28. 28.
    Monaghan DT, Yao D, Olverman HJ, Watkins JC, Cotman CW (1985) Autoradiography of3H-d-2-amino-5-phosphonopentanoate binding sites in rat brain. Neurosci Lett (in press)Google Scholar
  29. 29.
    Nadler JV, Evenson DA, Cuthbertson GJ (1981) Comparative toxicity of kainic acid and other acidic amino acids toward rat hippocampal neurons. Neuroscience 6:2505–2517Google Scholar
  30. 30.
    Olney JW, Fuller T, DeGubareff T (1979) Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 176:91–100Google Scholar
  31. 31.
    Olney JW, Fuller TA, Collins RC, deGubareff T (1980) Systemic dipiperidinoethane mimics the convulsant and neurotoxic actions of kainic acid. Brain Res 200:231–235Google Scholar
  32. 32.
    Olney JW, Fuller TA, deGubareff T (1981) Kainate-like neurotoxicity of folates. Nature 292:165–167Google Scholar
  33. 33.
    Olney JW, deGubareff T, Labuyere (1983) Seizure-related brain damage induced by cholinergic agents. Nature 301:520–522Google Scholar
  34. 34.
    Petito CK, Pulsinelli WA (1984) Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J Neuropathol Exp Neurol 43:141–153Google Scholar
  35. 35.
    Rieke GK, Bowers DE (1981) Necrotizing effects of kainic acid on neurons in the pigeon brain: Histological observations. Brain Res 212:411–423Google Scholar
  36. 36.
    Roberts PJ, Foster GA (1983) Receptors for excitotoxins. In: Fuxe K, Roberts P, Schwarcz R (eds) Excitotoxins. Wenner-Gren International Symposium Series, vol 39. MacMillan, London, pp 66–81Google Scholar
  37. 37.
    Schwarcz R, Foster AC, French ED, Whetsell WO, Jr, Köhler C (1984) Excitotoxic models for neurodegenerative disorders. Life Sci 35:19–32Google Scholar
  38. 38.
    Schwarcz R, Whetsell WO, Jr, Mangano RM (1983) Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in the rat brain. Science 219:316–318Google Scholar
  39. 39.
    Schwarcz R, Whetsell WO Jr, Foster AC (1983) The neurodegenerative properties of intracerebral quinolinic acid and its structural analog cis-2,3-piperidine dicarboxylic acid. In: Fuxe K, Roberts P, Schwarcz R (eds) Excitotoxins. Wenner-Gren International Symposium Series, vol 39. MacMillan, London, pp 122–137Google Scholar
  40. 40.
    Schwob JE, Fuller T, Price JL, Olney JW (1980) Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: A histological study. Neuroscience 5:991–1014Google Scholar
  41. 41.
    Spielmeyer W (1925) Zur Pathogenese örtlich elektiver Gehirnveränderungen. Z Ges Neurol Psychiatr 99:756–776Google Scholar
  42. 42.
    Steward O, Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169:347–370Google Scholar
  43. 43.
    Steward O (1976) Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol 167:285–314Google Scholar
  44. 44.
    Trump BF, McDowell EM, Arstila AU (1980) Cellular reaction to injury. In: Hill RB, LaVia MF (eds) Principles of pathobiology, 3rd ed, chapt 2. Oxford University Press, New York Oxford, pp 20–111Google Scholar
  45. 45.
    Vogt C, Vogt O (1937) Sitz und Wesen der Krankheiten im Lichte der topistischen Hirnforschung und des Varierens der Tiere. J Psychol Neurol 47:237–457Google Scholar
  46. 46.
    Walaas I (1983) The hippocampus. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp 337–358Google Scholar
  47. 47.
    Weil A, Liebert E, Heilbrunn G (1938) Histopathologic changes in the brain in experimental hyperinsulinism. Arch Neurol Psychiatry 39:467–481Google Scholar
  48. 48.
    Wieloch T (1985) Neurochemical correlates to regional selective neuronal vulnerability. Prog Brain Res (in press)Google Scholar
  49. 49.
    Wuerthele SM, Lovell KL, Jones MZ, Moore KE (1978) A histological study of kainic acid-induced lesions in the rat brain. Brain Res 149:489–497Google Scholar
  50. 50.
    Wyss JM (1981) An autoradiographic study of the efferent connections of the entorhinal cortex in the rat. J Comp Neurol 199:495–512Google Scholar
  51. 51.
    Zelman IB, Wierzba-Bobrowicz T (1980) Structural picture of brain damage in the rat in relation to insulin-induced hypoglycemia. Neuropatol Pol 18:301–311Google Scholar
  52. 52.
    Zimmer J (1971) Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation. J Comp Neurol 142:393–416Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. Auer
    • 1
    • 3
  • H. Kalimo
    • 2
  • Y. Olsson
    • 4
  • T. Wieloch
    • 1
  1. 1.Laboratory of Experimental Brain ResearchUniversity of LundLundSweden
  2. 2.Division of Neuropathology, Dept. of PathologyUniversity of GothenburgGothenburgSweden
  3. 3.Dept. of PathologyUniversity of TurkuTurkuFinland
  4. 4.Laboratory of Neuropathology, Institute of PathologyUniversity of UppsalaUppsalaSweden

Personalised recommendations