Acta Neuropathologica

, Volume 14, Issue 1, pp 62–71 | Cite as

Effect of actinomycin D on retrograde nerve cell reaction

Further observations
  • Ansgar Torvik
  • Anna Heding
Original Investigations


The retrograde nerve cell reaction was studied in the neurons of the reticular formation and in the facial nucleus of mice after intracerebral injections of actinomycin D.

Normally the reticular neurons show a classical type of retrograde reaction with dispersion of the Nissl substance and central chromatolysis. The facial neurons also show a dispersion of the Nissl granules but there is an early increase in the cytoplasmic basophilia instead of chromatolysis. The two types of neurons thus show somewhat different patterns of retrograde reaction.

It was shown previously that actinomycin prevented the appearance of retrograde reaction in the facial nucleus when the drug was injected at the time of operation (Torvik andHeding, 1967). The present study showed that actinomycin blocked the retrograde reaction also in the reticular formation when it was given 2 h before the reticulospinal fibers were cut.

When the drug was given 12 h after section of the reticulospinal fibers, the retrograde reaction developed normally in the reticular formation, although the neurons were morphologically normal at the time of injection. In the facial nucleus the retrograde reaction was blocked when the drug was given 9 h after the operation but not by 15 h.

The findings suggest that the morphological nerve cell changes after axon lesions are preceded by the synthesis of new enzymes in the injured cells, which in some way are necessary for the ensuing dispersion of the Nissl substance.


Nerve Cell Actinomycin D Retrograde Reaction Reticular Formation Facial Nucleus 


Die retrograde Zellreaktion wurde an Neuronen der Formatio reticularis und des Facialiskernes von Mäusen nach intracerebraler Injektion von Actinomycin D untersucht. Gewöhnlich zeigen die retikulären Neurone den klassischen Typ der retrograden Reaktion mit Dispersion der Nissl-Substanz und zentraler Chromatolyse. Die Neurone des Facialiskernes zeigen gleichfalls Dispersion der Nissl-Granula, aber leichte Zunahme der Cytoplasma-Basophilie statt Chromatolyse. Diese Neuronentypen zeigen demnach etwas differente Arten der retrograden Reaktion.

Actinomycin verhindert das Auftreten retrograder Reaktion im Facialiskern, wenn die Substanz z. Z. der Operation injiziert wird (Torvik u.Heding, 1967). Die vorliegende Studie zeigt, daß Actinomycin auch die retrograde Reaktion in der Formatio reticularis bei Verabreichung 2 Std vor Durchtrennung der reticulospinalen Fasern hemmt. Wird die Substanz 12 Std nach Durchtrennung der reticulospinalen Fasern verabreicht, so entwickelt sich die retrograde Degeneration in üblicher Weise in der Formatio reticularis, obwohl die Neurone zur Zeit der Injektion normal waren. Im Facialiskern wird die retrograde Reaktion durch Gabe der Substanz 9 Std nach der Operation, nicht aber nach 15 Std, blockiert.

Die Befunde lassen vermuten, daß den morphologischen Nervenzellveränderungen nach Axonläsion die Synthese neuer Enzyme in den geschädigten Zellen vorausght, die irgendwie für die folgende Dispersion der Nissl-Substanz erforderlich sind.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appel, S. H.: Turnover of brain messenger RNA. Nature (Lond.)213, 1253–1254 (1967).Google Scholar
  2. Barondes, S. H., andM. E. Jarvik: The influence of actinomycin—D on brain RNA synthesis and memory. J. Neurochem.11, 187–195 (1964).Google Scholar
  3. Bernard, W.: Ultrastructural aspects of the normal and pathological nucleolus in mammalian cells. Nat. Cancer Inst. Monogr.23, 13–38 (1966).Google Scholar
  4. Brockman, R. W., andE. P. Anderson: Biochemistry of cancer (metabolic aspects). Ann. Rev. Biochem.32, 463–512 (1963).Google Scholar
  5. Cammermeyer, J.: The importance of avoiding “dark” neurons in experimental neuropathology. Acta neuropath. (Berl.)1, 245–270 (1961).Google Scholar
  6. —: Peripheral chromatolysis after transection of the facial nerve. Acta neuropath. (Berl.)2, 213–230 (1963).Google Scholar
  7. David, H., andI. Marx: Leberparenchymzellveränderungen nach Gabe von Actinomycin C und D. Acta biol. med. germ.18, 259–273 (1967).Google Scholar
  8. Geuskens, M.: Etude autoradiographique et ultrastructurale de l'action de l'actinomycine D sur les oocytes d'astérie. Exp. cell Res.39, 400–412 (1965).Google Scholar
  9. Goldberg, I. H., andE. Reich: Actinomycin inhibition of RNA synthesis directed by DNA. Fed. Proc.23, 958–964 (1964).Google Scholar
  10. Han, S. S.: An electron microscopic and radioautographic study of the rat parotid gland after actinomycin D administration. Amer. J. Anat.120, 161–184 (1967).Google Scholar
  11. Harris, C., J. Reddy, andD. Svoboda: Isolation and ultrastructure of nucleoli alteredin vivo. Exp. Cell Res.51, 268–274 (1968).Google Scholar
  12. Hechter, O., andI. D. K. Halkerston: Effects of steroid hormones on gene regulation and cell metabolism. Ann. Rev. Physiol.27, 133–162 (1965).Google Scholar
  13. Heine, U., A. J. Langlois, andJ. W. Beard: Ultrastructural alterations in avian leucemic myeloblasts exposed to actinomycin Din vitro. Cancer Res.26, 1847–1858 (1966).Google Scholar
  14. Jézéquel, A.-M., andW. Bernard: Modification ultrastructurale du pancréas exocrine de rat sous l'effet de l'actinomycine D. J. Microscopie3, 279–296 (1964).Google Scholar
  15. Karnofsky, D. A., andB. D. Clarkson: Cellular effects of anticancer drugs. Ann. Rev. Pharmacol.3, 357–428 (1963).Google Scholar
  16. Kim, K.-H., andP. P. Cohen: Actinomycin D inhibition of thyroxine-induced synthesis of carbamyl phosphate synthetase. Biochim. biophys. Acta (Amst.)166, 574–577 (1968).Google Scholar
  17. Koenig, H., andS. Jacobson: Nuclear changes induced in neurons by actinomycin D. J. Cell Biol.31, 61–62A (1966).Google Scholar
  18. Labrie, F., andA. Korner: Actinomycin sensitive induction of tyrosine transaminase and tryptophan pyrrolase by amino acids and tryptophan. J. biol. Chem.243, 1116–1119 (1968).Google Scholar
  19. Peterkofsky, B., andG. M. Tomkins: Effects of inhibitors of nucleic acid synthesis on steroid-mediated induction of tyrosine aminotransferase in hepatoma cell cultures. J. molec. Biol.30, 49–61 (1967).Google Scholar
  20. Reich, E.: Biochemistry of actinomycins. Cancer Res.23, 1428–1441 (1963).Google Scholar
  21. Reynolds, R. C., P. O'B. Montgomery, andB. Hughes: Nucleolar “caps” produced by actinomycin D. Cancer Res.24, 1269–1277 (1964).Google Scholar
  22. Rodriquez, T. G.: Ultrastructural changes in the mouse exocrine pancreas induced by prolonged treatment with actinomycin D. J. Ultrastruct. Res.19, 116–129 (1967).Google Scholar
  23. Samuels, L. D.: Actinomycin and its effects. Influence on an effector pathway for hormonal control. New Engl. J. Med.271, 1252–1258 (1964).Google Scholar
  24. Schoefl, G. I.: The effect of actinomycin D on the fine structure of the nucleolus. J. Ultrastruct. Res.10, 224–243 (1964).Google Scholar
  25. Stenram, U., andR. Willén: The effect of actinomycin D on ultrastructure and radioautographic ribonucleic acid and protein labeling in rat liver after partial hepatectomy. Cancer Res.26, 765–772 (1966).Google Scholar
  26. Torvik, A., andA. Brodal: The origin of reticulospinal fibres in the cat. An experimental study. Anat. Rec.128, 113–137 (1957).Google Scholar
  27. —, andA. Heding: Histological studies on the effect of actinomycin D on retrograde nerve cell reaction. Acta neuropath. (Berl.)9, 146–157 (1967).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Ansgar Torvik
    • 1
  • Anna Heding
    • 1
  1. 1.Department of PathologyUllevål HospitalOsloNorway

Personalised recommendations