Journal of Materials Science

, Volume 31, Issue 10, pp 2687–2692 | Cite as

Mechanical properties of thermosets

Part I Tensile properties of an anhydride cured epoxy
  • A. Tcharkhtchi
  • S. Faivre
  • L. E. Roy
  • J. P. Trotignon
  • J. Verdu


The tensile properties of a DGEBA (diglycidylether of bisphenol A)-norbornene anhydride network (Tg≈130±5 °C), were studied in the range (220 K-Tg); 4×10−4 to 14×10−3S−1. The viscoelastic spectrum (1 Hz) reveals a low β transition at 220 K. The bulk modulus is practically constant between 200 K andTg — 20 K. The Poisson's ratio increases very slowly untilTg — 30 K. Then it increases rapidly to reach its asymptotic value (0.5) near toTg. The tensile (E) and shear (G) moduli display the classical behaviour linked to viscoelasticity. Plastic yielding occurs atT ≥ 80 °C, the elongation at yield is almost temperature and strain rate independent (G3y = 0.035), whereas the yield stress obeys Kambour's relationship: σy = 1.1 (TgT) and Eyring's law (activation volume = 914cm3mol−1). Physical ageing at 120 °C strongly affects the yield stress and the ductility. The maximum draw ratio, obtained atTTg, is ΛRC = 1.35, which seems to be consistent with the network's crosslink density.


Polymer Mechanical Property Ductility Anhydride Tensile Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. KAELBLE, in “Epoxy Resins” edited by C. A. May and Y. Tanaka (Marcel Dekker, New York, 1973) p. 330.Google Scholar
  2. 2.
    S. C. MISRA, J. A. MANSON and L. H. SPERING,Adv. Chem. Ser. 114 (1979) 137.Google Scholar
  3. 3.
    V. B. GUPTA, L. T. DRZAL and C. Y. C. LEE,Polym. Eng. Sci. 17 (1977) 837.CrossRefGoogle Scholar
  4. 4.
    R. J. MORGAN,Adv. Polym. Sci. 72 (1985) 1.CrossRefGoogle Scholar
  5. 5.
    E. MOREL, V. BELLENGER and J. VERDU,J. Mater. Sci. 24 (1989) 69.CrossRefGoogle Scholar
  6. 6.
    J. F. GERARD, J. GALY, J. P. PASCAULT, S. CUKIERMAN and J. L. HALARY,Poly. Eng. Sci. 31 (1991) 615.CrossRefGoogle Scholar
  7. 7.
    E. ESUCHE, J. GALY, J. F. GERARD, J. P. PASCAULT and H. SAUTEREAU. Invited Lecture, 12th Conference on Polymer Networks. Prague. 24–26 July 1994.Google Scholar
  8. 8.
    J. J. NUSSELDER and H. L. BOS, 12th Conference on Polymer Networks. Paper SL37, Prague. 24–26 July 1994.Google Scholar
  9. 9.
    J. D. LEMAY and E. N. KELLEYAdv. Polym. Sci. 78 (1986) 116.Google Scholar
  10. 10.
    S. WU,Polym. Eng. Sci. 32 (1992) 823.CrossRefGoogle Scholar
  11. 11.
    Idem J. Appl. Polym. Sci. 46 (1992) 619.CrossRefGoogle Scholar
  12. 12.
    K. DUSEK, M. BLEHA and S. LUNAK,J. Poly. Sci. Polym. Chem. 15 (1977) 2393.CrossRefGoogle Scholar
  13. 13. a)
    W. FISCH and W. HOFMANN.Plast. Technol. 8 (1961) 7Google Scholar
  14. 13. b)
    W. FISCH and W. HOFMANN.J. Appl. Chem. 6 (1956) 429.CrossRefGoogle Scholar
  15. 14.
    R. P. KAMBOURPolym. Comm. 24 (1983) 292.Google Scholar
  16. 15.
    L. C. E. STRUIK. “Physical ageing of amorphous polymers and other materials” (Elsevier, Amsterdam, 1978).Google Scholar
  17. 16.
    F. BUECHE, B. J. KINZIG and C. J. VOEN,Polym. Lett. 3 (1965) 399.CrossRefGoogle Scholar
  18. 17.
    R. F. LANDEL and R. F. FEDORS in “Mechanical behaviour of Polymers”.Soc. Mater. Sci. Japan (Kyoto),3 (1972) 496.Google Scholar
  19. 18.
    J. E. MARK,Adv. Polym. Sci. 44 (1982) 1.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • A. Tcharkhtchi
    • 1
  • S. Faivre
    • 1
  • L. E. Roy
    • 1
  • J. P. Trotignon
    • 1
  • J. Verdu
    • 1
  1. 1.ENSAMParisFrance

Personalised recommendations