Journal of Materials Science

, Volume 31, Issue 10, pp 2515–2521 | Cite as

A new approach to the effective viscosity of suspensions

  • Z. Fan
  • A. R. Boccaccini


Study of the effective viscosity of suspensions is not only of interest in science, but also of great practical relevance to industries, such as the petrochemical industry, food and nutrition, materials processing and so on. In this paper, an attempt is made to establish theoretically the correlation between the effective viscosity of suspensions and their microstructural features. Firstly, the method for microstructural characterization developed by Fanet al. will be introduced to describe effectively the particle distribution in a suspension, and then the analogy between viscosity and field properties will be used to develop a new approach for the effective viscosity of suspensions. The new approach considers implicitly the effects of size, shape, orientation and distribution of the solid particles within the suspension through the topological parameters. Therefore, it can be applied to a suspension containing solid particles with any size, shape, orientation and distribution. Compared with other models available in the literature, the present approach is more realistic and more versatile. It can be applied to both liquids containing solid particles with a very high viscosity, and porous suspensions where the second phase has a vanishing viscosity. Perhaps more importantly, the present approach can predict the well-known S-shaped logη-volume fraction curve in the whole range of microstructures (from completely continuous to completely discontinuous) and is in better agreement with experimental results.


Polymer Viscosity Microstructure Material Processing Solid Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. D. SALTZER and B. SCHULZ,High Temp. High Pressure 15 (1983) 289.Google Scholar
  2. 2.
    Idem, in Continuum Models of Discrete Systems: Proceedings of the 4th Conference 1981, Stockholm (North-Holland, Amsterdam), 423.Google Scholar
  3. 3.
    A. EINSTEIN,Ann. Phys. 19 (1906) 289.CrossRefGoogle Scholar
  4. 4.
    H. C. BRINKMAN,J. Chem. Phys. 20 (1952) 571.CrossRefGoogle Scholar
  5. 5.
    R. ROSCOE,Br. J. Appl. Phys. 3 (1952) 267.CrossRefGoogle Scholar
  6. 6.
    G. B. JEFFREY,Proc. R. Soc. London Ser. A 102 (1923) 161.CrossRefGoogle Scholar
  7. 7.
    A. PETERLIN,J. Phys. 111 (1939) 232.Google Scholar
  8. 8.
    W. KUHN, H. KUHN and P. BUCHNER,Ergeb. Exakten Naturwiss 25 (1951) 1.Google Scholar
  9. 9.
    E. GUTH and R. SIMHA,Koloid Z. 74 (1936) 266.CrossRefGoogle Scholar
  10. 10.
    V. VAND,J. Phys. Colloid Chem. 52 (1948) 277.CrossRefGoogle Scholar
  11. 11.
    R. SIMHA,J. Appl. Phys. 23 (1952) 1020.CrossRefGoogle Scholar
  12. 12.
    E. E. UNDERWOOD, in “Stereology and quantitative metallography”, STP 504, (ASTM, Philadelphia, PA, 1972) p. 3.CrossRefGoogle Scholar
  13. 13.
    Z. FAN, A. P. MIODOWNIK and P. TSAKIROPOULOS,Mater. Sci. Tech. 9 (1993) 1094.CrossRefGoogle Scholar
  14. 14.
    J. GURLAND,Trans. Met. Soc. AIME 212 (1958) 452.Google Scholar
  15. 15.
    H. C. LEE and J. GURLAND,Mater. Sci. Eng. 33 (1978) 125.CrossRefGoogle Scholar
  16. 16.
    Z. FAN, P. TSAKIROPOULOS and A. P. MIODOWNIK,Mater. Sci. Technol. 8 (1992) 922.CrossRefGoogle Scholar
  17. 17.
    Idem., Ibid. 9 (1993) 863.CrossRefGoogle Scholar
  18. 18.
    Z. FAN, P. TSAKIROPOULOS, P. A. SMITH and A. P. MIODOWNIK,Phil. Mag. 67A (1993) 515.CrossRefGoogle Scholar
  19. 19.
    Z. FAN and A. P. MIODOWNIK,Acta Metall. Mater. 40 (1993) 2403.CrossRefGoogle Scholar
  20. 20.
    Idem, ibid.,40 (1993) 2415.CrossRefGoogle Scholar
  21. 21.
    Z. FAN,Acta Metall. Mater. 43 (1995) 43.CrossRefGoogle Scholar
  22. 22.
    H. FISCHMEISTER and H. E. EXNER,Arch. Eisenhuttenwes. 37 (1966) 489.Google Scholar
  23. 23.
    J. N. SHIRE and R. L. WEBER, “Similarities in Physics” (Adam Hilger, Bristol, 1982).Google Scholar
  24. 24.
    G. ONDRACEK,Rev. Powder Metall. Physical Ceram. 3 (1987) 205.Google Scholar
  25. 25.
    Z. HASHIN, in “Mechanics of Composite Materials”, edited by F. W. Wendt, H. Liebowitz and N. Perrone (Pergamon Press, Oxford, 1970) p. 201.CrossRefGoogle Scholar
  26. 26.
    E. COHN, “Das Elektromagnetische Feld” (Verlag S Hirzel, Leipzig, 1900).Google Scholar
  27. 27.
    H. -LAMB, “Lehrbuch der Hydrodynamik”, 2nd Edn (Teubner Verlag, Leipzig, Berlin, 1931) p. 151.Google Scholar
  28. 28.
    K. MARUHN, in “2. Jahrbuch der deutschen Luftfahrtfoschung”, Vol. 1 (Verlag Oldenbourg, Munchen, Berlin, 1941) p. 135.Google Scholar
  29. 29.
    Z. FAN,Phil. Mag. (1996) in press.Google Scholar
  30. 30.
    A. R. BOCCACCINI, K. D. KIM and G. ONDRACEK,Mat.-wiss. u. Werkstofftech 26 (1995) 263.CrossRefGoogle Scholar
  31. 31.
    F. TROJER, “Die Oxydischen Kristallphasen” (Schweizerbartsche Verlagsbuchhandlung, 1963) p. 77.Google Scholar
  32. 32.
    W. VOGEL, “Glaschemic” (Springer-Verlag, Berlin, 1992) p. 211.CrossRefGoogle Scholar
  33. 33.
    J. WILLIAMSON and F. B. GLASER,Science 148 (1965) 158.CrossRefGoogle Scholar
  34. 34.
    A. R. BOCCACCINI and G. ONDRACEK,Glastech. Ber. 65 (1992) 73.Google Scholar
  35. 35.
    V. C. DUCAMP and R. RAJ,J. Amer. Ceram. Soc. 72 (1989) 798.CrossRefGoogle Scholar
  36. 36.
    V. SURA and P. C. PANDA,ibid. 73 (1990) 2697.CrossRefGoogle Scholar
  37. 37.
    M. N. RAHAMAN and L. C. DE JONGHE,ibid. 73 (1990) 707.CrossRefGoogle Scholar
  38. 38.
    W. NIESEL,Anal. Phys. 6 Folge 10 (1952) 336.Google Scholar
  39. 39.
    F. EIRICH, H. MARGARETHA and M. BUNZL,Kolloid. Z. 74 (1936), 276.CrossRefGoogle Scholar
  40. 40.
    Idem., ibid. 75 (1936) 20.CrossRefGoogle Scholar
  41. 41.
    H. EILERS,Kolloid. Z. 96/97 (1941) 313.CrossRefGoogle Scholar
  42. 42.
    J. V. ROBINSON,J. Phys. Kolloid. Chem. 53 (1949) 1042.CrossRefGoogle Scholar
  43. 43.
    S. G. WARD and L. R. WHITMORE,Br. J. Appl. Phys. 1 (1950) 286.CrossRefGoogle Scholar
  44. 44.
    J. V. ROBINSON,J. Phys. Kolloid. Chem. 55 (1951) 455.CrossRefGoogle Scholar
  45. 45.
    P. S. WILIAMS,J. Appl. Phys. 3 (1953) 120.Google Scholar
  46. 46.
    K. SWEENY and R. D. GECKLER,ibid. 25 (1954) 1135.CrossRefGoogle Scholar
  47. 47.
    G. H. HIGGINBOTHAM, D. R. OLIVER and S. G. WARD,Br. J. Appl. Phys. 9 (1958) 372.CrossRefGoogle Scholar
  48. 48.
    L. NICODEMO, C. L. NICOLAIS and R. F. LANDEL,Chem. Eng. J. 29 (1974) 729.CrossRefGoogle Scholar
  49. 49.
    S. VAN KAO, S. E. NIELSEN and C. T. HILL, in “Rheology of Concentrated Suspensions”, HPC-74-167 (University of Washington, Seattle, 1974).Google Scholar
  50. 50.
    B. SCHULZ, in Proceedings of ANS/ASME Meeting, Saragota, USA, NUREG/CP-0014, (American Society For Mechanical Engineers, New York, 1980) p. 1967.Google Scholar
  51. 51.
    E. WERNER and H. P. STUWE,Mater. Sci. Eng. 68 (1984–1985) 175.CrossRefGoogle Scholar
  52. 52.
    P. UGGOWITZER and H. P. SUWE,Z. Metallkd 73 (1982) 277.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Z. Fan
    • 1
  • A. R. Boccaccini
    • 2
  1. 1.Oxford Centre for Advanced Materials and Composites, Department of MaterialsThe University of OxfordOxfordUK
  2. 2.School of Metallurgy and MaterialsThe University of BirminghamEdgbastonUK

Personalised recommendations