Solar Physics

, Volume 159, Issue 2, pp 213–228 | Cite as

Magnetosonic waves in structured atmospheres with steady flows

I.Magnetic slabs
  • V. M. Nakariakov
  • B. Roberts
Article

Abstract

The magnetosonic modes of magnetic plasma structures in the solar atmosphere are considered taking into account steady flows of plasma in the internal and external media and using a slab geometry. The investigation brings nearer the theory of magnetosonic waveguides, in such structures as coronal loops and photospheric flux tubes, to realistic conditions of the solar atmosphere. The general dispersion relation for the magnetosonic modes of a magnetic slab in magnetic surroundings is derived, allowing for field-aligned steady flows in either region. It is shown that flows change both qualitatively and quantitatively the characteristics of magnetosonic modes. The flow may lead to the appearance of a new type of trapped mode, namelybackward waves. These waves are the usual slab modes propagating in the direction opposite to the internal flow, but advected with the flow. The disappearance of some modes due to the flow is also demonstrated.

The results are applied to coronal and photospheric magnetic structures. In coronal loops, the appearance of backward slow body waves or the disappearance of slow body waves, depending upon the direction of propagation, is possible if the flow speed exceeds the internal sound speed (≈ 300 km s−1). In photospheric tubes, the disappearance of fast surface and slow body waves may be caused by an external downdraught of about 3 km s−1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschwanden, M. J.: 1987,Solar Phys. 111, 113,Google Scholar
  2. Cally, P. S.: 1986,Solar Phys. 108, 183.Google Scholar
  3. Chakraborty, B. B.: 1968,Progress of Theoretical Phys. 40, 210.Google Scholar
  4. Chandrasekhar, S.: 1961,Hydrodynamic and Hydromagnetic Stability, Clarendon Press, London.Google Scholar
  5. Davila J. M.: 1985,Astrophys. J. 291, 328.Google Scholar
  6. Edwin, P. M. and Roberts, B.: 1982,Solar Phys. 76, 239.Google Scholar
  7. Edwin, P. M. and Roberts, B.: 1983,Solar Phys. 88, 179.Google Scholar
  8. Ferrari, A., Trussoni, E., and Zaninetti, L.: 1981,Monthly Notices Roy. Astron. Soc. 196, 1051.Google Scholar
  9. Goossens, M., Hollweg, J. V., and Sakurai, T.: 1992.Solar Phys. 138, 233.Google Scholar
  10. Hollweg, J. V., Yang, G., Cadez, V. M., and Gakovic, B.: 1990,Astrophys. J. 349, 335.Google Scholar
  11. Lee, L. C., Wang, S., Wei, C. Q., and Tsurutani, B. T.: 1988,J. Geophys. Res. 93, 7354.Google Scholar
  12. McKenzie, J. F.: 1970,J. Geophys. Res. 75, 5331.Google Scholar
  13. Nakariakov, V. M. and Oraevsky, V. N.: 1995,Solar Phys., in press.Google Scholar
  14. Parker, E. N.: 1964,Astrophys. J. 139, 690.Google Scholar
  15. Roberts, B.: 1981a,Solar Phys. 69, 27.Google Scholar
  16. Roberts, B.: 1981b,Solar Phys. 69, 39.Google Scholar
  17. Roberts, B., Edwin, P. M., and Benz, A. O.: 1984,Astrophys. J. 279, 857.Google Scholar
  18. Ryutova, M. P.: 1988,Soviet Phys. JETF 67, 1594.Google Scholar
  19. Satya Narayanan, A.: 1991,Plasma Phys. Control. Fusion 33, 333.Google Scholar
  20. Satya Narayanan, A. and Somasundaram, K.: 1985,Astrophys. Space Sci. 109, 357.Google Scholar
  21. Singh, A. P. and Talwar, S. P.: 1993,Solar Phys. 148, 27.Google Scholar
  22. Singh, A. P. and Talwar, S. P.: 1994,Solar Phys. 149, 331.Google Scholar
  23. Somasundaram, K. and Satya Narayanan, A.: 1987,Plasma Phys. Control. Fusion 29, 497.Google Scholar
  24. Spruit, H. C.: 1982,Solar Phys. 75, 3.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • V. M. Nakariakov
    • 1
  • B. Roberts
    • 2
  1. 1.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia
  2. 2.School of Mathematical and Computational SciencesUniversity of St. AndrewsSt. Andrews, FifeScotland

Personalised recommendations