Acta Neuropathologica

, Volume 14, Issue 2, pp 137–150

Sodium localization in the adult brain

I. Normal brain tissue
  • Eiichi Tani
  • Toshio Ametani
  • Hajime Handa
Original Investigations

Summary

Grossly visible precipitates were formed when 2% solution of potassium pyroantimonate was added to 0.01 M acetic acid, 0.1 N hydrochloric acid, or some divalent cation solutions. Localization of sodium ion in the brain of rat and cat was, therefore, studied by use of potassium pyroantimonate buffered with s-collidin. The sodium precipitates were observed mainly on the plasma membranes of neuron, astrocyte, endothelial and perivascular cells as well as erythrocyte. In the neuron, the precipitates were most numerous on the plasma membranes of terminal boutons and dendrites, particularly synapses. The dense precipitates were less in number on the plasma membranes of astrocyte, endothelial and perivascular cells than of neuron. In addition, there was some evidence of the dense precipitates localized in the extracellular space. All of the sodium precipitates shown on the plasma membranes in the brain were situated on the internal surface of the plasma membranes. Similar localization of the sodium ion was evident on the plasma membrane of the erythrocyte. The site of the sodium precipitates on the plasma membranes was discussed in relation to the distribution of Na+-K+ stimulated ATPase.

Key-Words

Sodium Localization Potassium Pyroantimonate Terminal Boutons Dendrites Na+-K+ Stimulated ATPase 

Zusammenfassung

Bei Zugabe von 2% Kalium-Pyroantimonat zu 0,01 M Essigsäure, 0,1 N Salzsäure oder verschiedenen bivalenten Kationenlösungen werden deutlich erkennbare Präcipitate gebildet. Die Lokalisation von Na+-Ionen im Gehirn von Ratten und Katzen wurde daher mittels Kalium-Pyroantimonat gepuffert mit S-Collodin untersucht. Die Na+-Niederschläge wurden vorwiegend an den Plasmamembranen der Neuronen, Astrocyten, Endothel- und perivasculären Zellen sowie in Erythrocyten beobachtet. In den Neuronen waren die Niederschläge gehäuft an den Plasmamembranen der Endknöpfchen und Dendriten, vorwiegend an Synapsen. Dichte Präcipitate waren an den Plasmamembranen der Astrocyten, Endothel- und perivasculären Zellen weniger häufig als am Neuron. Ferner ergaben sich Hinweise für dichte Präcipitate im extracellulären Raum. Alle an den Plasmamembranen in Gehirn nachgewiesenen Na+-Niederschläge lagen an der inneren Membranoberfläche. Ähnliche Lokalisation zeigten sie an der Plasmamembran des Erythrocyten. Der Sitz der Na+-Präcipitate an den Plasmamembranen wird in bezug auf die Verteilung der Na+-K+-aktivierten ATPase diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A., andL. G. Abood: Biochemical studies on mitochondria and other cytoplasmic fractions of developing rat brain. J. Neurochem.11, 9–15 (1964).Google Scholar
  2. —,J. Brody, andH. Ramahi: Studies on sodium-potassium adenosine triphosphatase of the nerve endings and appearance of electrical activity in developing rat brain. J. Neurochem.14, 1133–1141 (1967).Google Scholar
  3. Albers, R. W., G. Rodriguez de Lores Arnaiz, andE. de Robertis: Sodium-potassium activated ATPase and potassium-activated p-nitrophenyl-phosphatase: A comparison of their subcellular localization in rat brain. Proc. nat. Acad. Sci. (Wash.)53, 557–564 (1965).Google Scholar
  4. Aleu, F. P., R. Katzman, andR. D. Terry: Fine structure and electrolyte analysis of cerebral edema induced by alkyltin intoxication. J. Neuropath. exp. Neurol.22, 403–413 (1963).Google Scholar
  5. Aprison, M. H., A. Lukenbill, andW. E. Segar: Sodium, potassium, chloride, and water content of six discrete parts of mammalian brain. J. Neurochem.5, 150–155 (1960).Google Scholar
  6. Bakay, L., andJ. C. Lee: Ultrastructural changes in the edematous central nervous system. III. Edema in shark brain. Arch. Neurol. (Chic.)14, 644–660 (1966).Google Scholar
  7. Bradford, H. F., E. K. Brownlow, andD. B. Gammack: The distribution of cationstimulated adenosine triphosphatase in subcellular fractions from bovine cerebral cortex. J. Neurochem.13, 1283–1297 (1966).Google Scholar
  8. Bulger, R. E.: Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissue. J. Cell Biol.40, 79–94 (1969).Google Scholar
  9. Coppen, A. J.: Abnormality of the blood-cerebral fluid barrier of patients suffering from a depressive illness. J. Neurol. Neurosurg. Psychiat.23, 156–161 (1960).Google Scholar
  10. Davson, H.: Physiology of the ocular and cerebrospinal fluids. London: Churchill 1956.Google Scholar
  11. Deul, D. H., andH. McIlwain: Activation and inhibition of adenosine triphosphatases of subcellular particles from the brain. J. Neurochem.8, 246–256 (1961).Google Scholar
  12. Drochmans, P.: Morphologie du glycogène. Etude au microscope électronique de colorations négatives du gycogène particulaire. J. Ultrastruct. Res.6, 141–163 (1962).Google Scholar
  13. Eichelberger, L., andR. B. Richter: Water, nitrogen, and electrolyte concentration in brain. J. biol. Chem.154, 21–29 (1944).Google Scholar
  14. Fahn, S., andL. J. Côté: Regional distribution of sodium-potassium activated adenosine triphosphatase in the brain of the Rhesus monkey. J. Neurochem.15, 433–436 (1968).Google Scholar
  15. Hartmann, J. F.: High sodium content of cortical astrocytes. Arch. Neurol. (Chic.)15, 633–642 (1966).Google Scholar
  16. Hosie, R. J.: Localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pug brain. Biochem. J.96, 404–412 (1965).Google Scholar
  17. Jander, G., u.H. Wendt: Lehrbuch der analytischen präparativen anorganischen Chemie, 3. Aufl. Leipzig: S. Hirzel 1960.Google Scholar
  18. Järnefelt, J.: ATP-dependent binding of sodium by microsomes from brain. Biochem. biophys. Res. Commun.6, 285–288 (1961).Google Scholar
  19. Katzman, R.: Electrolyte distribution in mammalian central nervous system. Are glia high sodium cells? Neurology (Minneap.)11, 27–36 (1961).Google Scholar
  20. —: Effect of electrolyte distribution on the central nervous system. Ann. Rev. Med.17, 197–212 (1966).Google Scholar
  21. Kaye, G. I., J. D. Cole, andA. Donn: Electron microscopy: Sodium localization in normal and oubain-treated transporting cells. Science150, 1167–1168 (1965).Google Scholar
  22. —,H. O. Wheeler, R. T. Whitlock, andN. Lane: Fluid transport in the in the rabbit gall bladder. A combined physiological and electron microcope study. J. Cell Biol.30, 237–268 (1966).Google Scholar
  23. Koch, A., J. B. Ranck, andB. L. Newman: Ionic content of the neuroglia. Exp. Neurol.6, 186–200 (1962).Google Scholar
  24. Komnick, H.: Elektronenmikroskopische Lokalisation von Na+ und Cl in Zellen und Geweben. Protoplasma (Wien)55, 414–418 (1962).Google Scholar
  25. —, u.U. Komnick: Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus. V. Teil, Experimenteller Nachweis der Transportwege. Z. Zellforsch.60, 163–203 (1963).Google Scholar
  26. Kurokawa, H., M. Kato, andJ. Sakamoto: Distribution of sodium-plus-potassium-stimulated adenosine-triphosphatase activity in isolated nerve-ending particles. Biochem. J.97, 833–844 (1965).Google Scholar
  27. Ling, C.-M., andA. A. Abdel-Latif: Studies on sodium transport in rat brain nerve-ending particles. J. Neurochem.15, 721–729 (1968).Google Scholar
  28. Lowry, O. H., A. B. Hastings, C. M. McCay, andA. N. Brown: Histochemical changes associated with aging; liver, brain, and kidney in rat. J. Geront.1, 345–357 (1946).Google Scholar
  29. Manery, J. F., andA. B. Hastings: The distribution of electrolytes in mammalian tissues. J. biol. Chem.127, 657–676 (1938).Google Scholar
  30. Ochi, J.: Elektronenmikroskopischer Nachweis der Natriumionen in den Schweißdrüsen der Rattenfußsohle. Histochemie14, 300–307 (1968).Google Scholar
  31. Post, R. L., C. R. Merritt, C. R. Kinsolving, andC. D. Albright: Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. biol. Chem.235, 1796–1802 (1960).Google Scholar
  32. Quastel, J. H.: Molecular transport at cell membranes. Proc. roy. Soc. B163, 169–196 (1965).Google Scholar
  33. Rodriguez de Lores Arnaiz, G., M. Alberici, andE. De Robertis: Ultrastructural and enzymatic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex. J. Neurochem.14, 215–225 (1967).Google Scholar
  34. Samson, F. E., H. C. Dick, andW. M. Balfour: Na+-K+ stimulated ATPase in the brain during neonatal maturation. Life Sci.3, 511–515 (1964).Google Scholar
  35. Samson, F. E., Jr., andD. J. Quinn: Na+-K+-activated ATPase in rat brain development. J. Neurochem.14, 421–427 (1967).Google Scholar
  36. Skou, J. C.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochem. biophys. Acta (Amst.)23, 394–401 (1957).Google Scholar
  37. —: Further investigations on a Mg+++Na+-activated adenosine-triphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochim. biophys. Acta (Amst.)42, 6–23 (1960).Google Scholar
  38. Tani, E., T. Ametani, andH. Handa: Localization of sodium ions in the choroid plexus. In submission to Arch. Neurol. (1969).Google Scholar
  39. ———: Sodium localization in the adult brain. II. Triethyltin intoxication and cerebral edema produced by epidural compression. Acta neuropath. (Berl.)14, 151–160 (1969).Google Scholar
  40. Tanaka, R., andL. G. Abood: Studies on adenosine triphosphatase of relating pure mitochondria and other cytoplasmic constituents of rat brain. Arch. Biochem.105, 554–562 (1964).Google Scholar
  41. Torack, R. M.: Adenosine triphosphatase activity in rat brain following differential fixation with formaldehyde, glutaraldehyde, and hydroxyadipaldehyde. J. Histochem. Cytochem.13, 191–205 (1965).Google Scholar
  42. —, andR. J. Barrnett: Nucleoside phosphatase activity in membranous fine structure of neurons and glia. J. Histochem. Cytochem.11, 763–772 (1963).Google Scholar
  43. ——: The fine structural localization of nucleoside phosphatase activity in the blood-brain barrier. J. Neuropath. exp. Neurol.23, 46–59 (1964).Google Scholar
  44. Tschirgi, R. D., R. W. Frost, andJ. L. Taylor: Inhibition of cerebrospinal fluid formation by a carbonic anhydrase inhibition, 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide (Diamox). Proc. Soc. exp. Biol. (N. Y.)37, 373–376 (1954).Google Scholar
  45. Van Lennep, E. W.: Electron microscopic histochemical studies on salt-excreting glands in Elasmobranchs and marine catfish. J. Ultrastruct. Res.25, 94–108 (1968).Google Scholar
  46. Vernadakis, A., andD. M. Woodbury: Electrolyte and amino acid changes in rat brain during maturation. Amer. J. Physiol.203, 748–752 (1963).Google Scholar
  47. Woodbury, D. M.: Distribution kinetics of injected ions in rat cerebral cortex. In: Biology of Neuroglia (Windle, W. F., ed.), pp. 130–138. Springfield, Ill.: Ch. C. Thomas 1958.Google Scholar
  48. Yamada, E.: Sodium localization in the plasma membrane of the intestinal absorptive epithelial cell. Arch. Histol. Jap.28, 419–423 (1967).Google Scholar
  49. Yannet, H., andD. C. Darrow: Effect of hyperthermia on distribution of water and electrolytes in brain, muscle and liver. J. clin. Invest.17, 87–94 (1938).Google Scholar
  50. Zadunaisky, J. A.: The localization of sodium in the transverse tubules of skeletal muscle. J. Cell Biol.31, C 11–16 (1966).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Eiichi Tani
    • 1
  • Toshio Ametani
    • 1
  • Hajime Handa
    • 1
  1. 1.Department of NeurosurgeryKyoto University Medical SchoolKyotoJapan

Personalised recommendations