Cancer Chemotherapy and Pharmacology

, Volume 36, Issue 5, pp 425–430

Clinical pharmacology of cytarabine in patients with acute myeloid leukemia: a Cancer and Leukemia Group B study

  • Ronald A. Fleming
  • Robert L. Capizzi
  • Gary L. Rosner
  • Lawrence K. Oliver
  • Stephen J. Smith
  • Charles A. Schiffer
  • Richard T. Silver
  • Bruce A. Peterson
  • Raymond B. Weiss
  • George A. Omura
  • Robert J. Mayer
  • David A. Van Echo
  • Clara D. Bloomfield
  • Richard L. Schilsky
Original Article Cytarabine, Leukemia

Abstract

The pharmacokinetics of cytarabine (ara-C) were determined in 265 patients with acute myeloid leukemia (AML) receiving ara-C (200 mg/m2 per day for 7 days as a continuous infusion) and daunorubicin during induction therapy. The mean (standard deviation) ara-C concentration at steady-state (Css) and systemic clearance (Cl) were 0.30 (0.13) μM and 134 (71) l/h per m2 respectively. Males had a significantly faster ara-C Cl (139 vs 131 l/h per m2,P=0.025) than females. Significant correlations were noted between ara-C Cl and the pretreatment, peripheral white blood cell count (P=0.005) and pretreatment blast count (P=0.020). No significant differences in ara-C Css or Cl were noted in patients achieving complete remission compared with those failing therapy (P=0.315,P=0.344, respectively). No significant correlations were observed between ara-C pharmacokinetic parameters and several indices of patient toxicity. Our findings indicate that variability in ara-C disposition in plasma at this dosage level does not correlate with remission status or toxicity in patients with AML receiving initial induction therapy with ara-C and daunorubicin.

Key words

Cytarabine Leukemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avramis VI, Biener R, Krailo M, et al (1987) Biochemical pharmacology of high dose 1-β-D-arabinofuranosylcytosine in childhood acute leukemia. Cancer Res 47: 6786Google Scholar
  2. 2.
    Bonate PL (1991) Gender-related differences in xenobiotic metabolism. J Clin Pharmacol 31: 684Google Scholar
  3. 3.
    Capizzi RL, Yang JL, Cheng E, et al (1983) Alteration of the pharmacokinetics of high-dose ara-C by its metabolite, high ara-U in patients with acute leukemia. J Clin Oncol 1: 763Google Scholar
  4. 4.
    Capizzi RL, White JC, Powell BL, Perrino F (1991) Effect of dose on the pharmacokinetic and pharmacodynamic effects of ara-C. Semin Hematol 28 [Suppl 4]: 54Google Scholar
  5. 5.
    Cohen J (1986) Pharmacokinetic changes in aging. Am J Med 80 [Suppl 5A]: 31Google Scholar
  6. 6.
    Cox DR (1970) Analysis of binary data. Chapman and Hall, LondonGoogle Scholar
  7. 7.
    Cuzik J (1985) A Wilcoxon-type test for trend. Stat Med 4: 87Google Scholar
  8. 8.
    Dawling S, Crome P (1989) Clinical pharmacokinetic considerations in the elderly. An update. Clin Pharmacokinet 17: 236Google Scholar
  9. 9.
    Dillman RO, Davis RB, Green MR, et al (1991) A comparative study of two different doses of cytarabine for acute myeloid leukemia: a phase III trial of Cancer and Leukemia Group B. Blood 78: 2520Google Scholar
  10. 10.
    Evans WE and Relling MV (1989) Clinical pharmacokinetics-pharmacodynamics of anticancer drugs. Clin Pharmacokinet 16: 327Google Scholar
  11. 11.
    Evans WE, Crom WR, Abromowitch M, et al (1986) Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia: identification of a concentration-effect relationship. N Engl J Med 314: 471Google Scholar
  12. 12.
    Green S, Weiss GR (1992) Southwest Oncology Group standard response criteria endpoint definitions and toxicity criteria. Invest New Drugs 10: 239Google Scholar
  13. 13.
    Hayder S, Lafolie P, Bjork O, Peterson C (1989) 6-mercaptopurine plasma levels in children with acute lymphoblastic leukemia: relation to relapse risk and myelotoxicity. Ther Drug Monit 11: 617Google Scholar
  14. 14.
    Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariate methods (2nd edn.) PWS-Kent, BostonGoogle Scholar
  15. 15.
    Koren G, Ferrazini G, Sulh H, et al (1990) Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med 323: 17Google Scholar
  16. 16.
    Liliemark JO, Plunkett W, Dixon DO (1985) Relationship of 1-β-D-arabinofuranosylcytosine in plasma to 1-β-D-arabinofuranosylcytosine 5-triphosphate levels in leukemic cells during treatment with high-dose 1-β-D-arabinofuranosylcytosine. Cancer Res 45: 5952Google Scholar
  17. 17.
    Mancini WR (1992) The role of deoxycytidine-metabolizing enzymes in the cytotoxicity induced by 3′-amino-2′,3′-dideoxycytidine and cytosine arabinoside. Cancer Chemother Pharmacol 30: 139Google Scholar
  18. 18.
    Mayer RJ, Davis RB, Schiffer CA, et al (1994) Intensive post-remission chemotherapy in adults with acute myeloid leukemia. N Engl J Med 331: 896Google Scholar
  19. 19.
    Milano G, Etienne MC, Cassuto-Viguier E, et al (1992) Influence of sex and age on fluorouracil clearance. J Clin Oncol 10: 1171Google Scholar
  20. 20.
    Piall EM, Aherne GW, Marks VM (1979) Radioimmunoassay for cytosine arabinoside. Br J Cancer 40: 548Google Scholar
  21. 21.
    Plagemann PGW, Marz R, Wohlhueter RM (1978) Transport and metabolism of deoxycytidine and 1-β-D-arabinofuranosylcytosine into cultured Novikoff rat hepatoma cells, relationship to phosphorylation, and regulation of triphosphate synthesis. Cancer Res 38: 978Google Scholar
  22. 22.
    Plunkett W, Lilliemark JO, Adams TM et al (1987) Saturation of 1-β-arabinofuranosylcytosine 5′-triphosphate accumulation in leukemia cells during high dose 1-β-D-arabinosylcytosine therapy. Cancer Res 47: 3005Google Scholar
  23. 23.
    Riva CM, Rustum YM, Preisler HD (1985) Pharmacokinetics and cellular determinants of response to 1-β-arabinofuranosylcytosine (ara-C). Semin Oncol 12 [Suppl 3]: 1Google Scholar
  24. 24.
    Rosner B (1990) Fundamentals of biostatistics. PWS-Kent, BostonGoogle Scholar
  25. 25.
    Rustum YM, Riva C, Priesler HD (1987) Pharmacokinetic parameters of 1-β-D-arabinofurannosylcytosine (ara-C) and their relationship to intracellular metabolism of ara-C, toxicity, and response of patients with acute nonlymphocytic leukemia treated with conventional and high-dose ara-C. Semin Oncol 14 [Suppl 1]: 141Google Scholar
  26. 26.
    White JC, Rathmel JP, Capizzi RL (1987) Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemia cells. J Clin Invest 79: 380Google Scholar
  27. 27.
    Wiley JS, Jones SP, Sawyer WH (1982) Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J Clin Invest 69: 479Google Scholar
  28. 28.
    Wiley JS, Jones SP, Sawyer WH (1983) Cytosine arabinoside transport by human leukemia cells. Eur J Cancer Clin Oncol 19: 1067Google Scholar
  29. 29.
    Wiley JS, Taupin J, Jamieson GP, Snook M, Sawyer WH, Finch LR (1985) Cytosine arabinoside transport and metabolism in acute leukemia and T-cell lymphoblastic lymphoma. J Clin Invest 75: 632Google Scholar
  30. 30.
    Wohlhueter RM, Plagemann PGW (1980) The roles of transport and phosphorylation in nutrient uptake in cultured animal cells. Int Rev Cytol 64: 171Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Ronald A. Fleming
    • 1
  • Robert L. Capizzi
    • 1
  • Gary L. Rosner
    • 2
  • Lawrence K. Oliver
    • 3
  • Stephen J. Smith
    • 1
  • Charles A. Schiffer
    • 4
  • Richard T. Silver
    • 5
  • Bruce A. Peterson
    • 6
  • Raymond B. Weiss
    • 7
  • George A. Omura
    • 8
  • Robert J. Mayer
    • 9
  • David A. Van Echo
    • 4
  • Clara D. Bloomfield
    • 10
  • Richard L. Schilsky
    • 11
  1. 1.Medical Center BoulevardComprehensive Cancer Center of Wake Forest UniversityWinston-SalemUSA
  2. 2.Duke University Medical CenterDurhamUSA
  3. 3.The Upjohn CompanyKalamazooUSA
  4. 4.University of Maryland Cancer CenterBaltimoreUSA
  5. 5.The New York HospitalNew YorkUSA
  6. 6.University of Minnesota Medical SchoolMinneapolisUSA
  7. 7.Walter Reed Army Medical CenterWashington DCUSA
  8. 8.The University of Alabama at BirminghamBirminghamUSA
  9. 9.Dana-Farber Cancer InstituteBostonUSA
  10. 10.Roswell Park Cancer InstituteBuffaloUSA
  11. 11.Cancer Research CenterUniversity of ChicagoChicagoUSA
  12. 12.US BioscienceWest ConshohockenUSA

Personalised recommendations