Acta Neuropathologica

, Volume 57, Issue 2–3, pp 239–242 | Cite as

Immunoglobulins and complement factors in senile plaques

An immunoperoxidase study
  • P. Eikelenboom
  • F. C. Stam
Short Original Communications


Immunoperoxidase techniques were used to obtain information about the possible presence of serum factors in senile plaques. We found only in plaques consisting of an amyloid core surrounded by a corona of degenerating neurites small amounts of IgG and light chains (kappa and labda). These immunoglobulins were principally localized in the corona and not in the central amyloid core. further it was found that all plaques contain the complement factors C1q, C3b, C3c, C3d and C4. Senile plaques lacked C5, C3 pro-activator and properdin. The possible significance of these findings in the gensis of the senile plaques and amyloid formation is discussed.

Key words

Senile plaque Cerebral amyloid Immunoglobulins Complement factors Immunoperoxidase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avrameas S, Ternynck T (1971) Peroxidase labeled antibody and Fab conjugate with enhanced intracellular penetration. Immunochemistry 8:1175–1179Google Scholar
  2. Boorsma DM, Streefkerk JG (1978) Improved method for separation of peroxidase conjugates. In: Knapp W, Holubar, K, Wick G (eds) Immunofluorescence and related staining techniques. Elsevier-North Holland Biochemical Press Amsterdam, pp 225–235Google Scholar
  3. Boorsma DM, Streefkerk JG (1976a) Some aspects of the preparation, analysis and use of peroxidase-antibody conjugates in immunohistochemistry. In: Pecters H (ed) Protides of the biological fluids, vol 24. Pergamon Press, Oxford, pp 795–802Google Scholar
  4. Boorsma DM, Streefkerk JG (1976b) Peroxidase conjugate chromotography. Isolation of conjugates prepared with glutaraldehyde of periodate using polyacrylamidelagarose gel. J Histochem Cytochem 24:481–486Google Scholar
  5. Davis BJ, Ornstein L (1959) High resolution enzyme localization with a new diazo reagent, “hexazonium Pararosaniline”. J Histochem Cytochem 7:297–298Google Scholar
  6. Divry P (1927) Etude histochimique des plaques seniles. J Belge Nerol 27:643–657Google Scholar
  7. Du Clos TW, Mold C, Paterson PY, Alroy J, Gewurz H (1981) Localization of C-reactive protein in inflammatory lesions of experimental allergic encephalomyelitis. Clin Exp Immunol 43:565–573Google Scholar
  8. Gewurz H, Lint TF (1977) Alternative modes and pathways of complement activation. In: Day NK, Good RA (eds) Biological amplification systems in immunology. Plenum Med Book, New York, pp 17–45Google Scholar
  9. Glenner GG (1978) Current knowledge of amyloid deposits as applied to senile plaques and congophilic angiopathy. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer's disease and related disorders. Raven Press, New York, pp 493–501Google Scholar
  10. Ishii T, Haga S (1976) Immuno-electron microscopic localization of immunoglobulins in amyloid fibrils of senile plaques. Acta Neuropathol (Berl) 36:243–249Google Scholar
  11. Ishii T, Haga S, Shimuzu F (1975) Identification of components of immunoglobulins in senile plaques by means of fluorescent antibody technique. Acta Neuropathol (Berl) 32:157–162Google Scholar
  12. Kaplan MH, Volanakis JE (1974) Intraction of C-ractive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with choline phosphatides, leithin and sphingomyelin. J Immunol 112:2135–2147Google Scholar
  13. Katenkamp D, Stiller D, Thoss K (1970) Untersuchungen zum immunohistochemischen Verhalten der senilen Plaques des menschlichen Gehirnes. Virchows Arch A [Pathol Anat] 351:333–339Google Scholar
  14. Linder E (1980) Similarities between cytoskeletal “intermediate” 10 nm filaments and amyloid. In: Glenner GG, Pinho E, Costa P, Falcao de Freitas A (eds) Amyloid and amyloidosis. Excerpta Medica, Amsterdam, pp 283–287Google Scholar
  15. Linder E, Lento VP, Stenman S (1979) Activation of complement by cytoskeletal intermediate filaments. Nature 278:176–178Google Scholar
  16. Pearse AGE (1968) Histochemistry. Theoretical and applied, vol II, 3rd edn. Churchill Livingstone, EdinburghGoogle Scholar
  17. Powers JM, Skeen JT (1980) An immunoperoxidase study of neuritic plaque. J Neuropathol Exp Neurol 39:385Google Scholar
  18. Puchtler H, Sweat F, Levine M (1962) On the binding of Congo red by amyloid J Histochem Cytochem 10:355–364Google Scholar
  19. Schorlemmer HU, Ferluga J, Allison AC (1977) Interactions of macrophages and complement components in the pathogenesis of chronic inflammation. In: Willoughby D, Giroud JP, Velo GP (eds) Perspectives in inflammation. MTP Press, Lancaster, pp 191–206Google Scholar
  20. Schwartz P (1970) Amyloidosis cause and manifestation of senile deterioration. Thomas, Springfield, ILGoogle Scholar
  21. Stam FC (1965) Histochemistry of the senile involution of the brain. In: Vtn Int Congr Neuropathol Proc. Excerpta Medica, Amsterdam, pp 513–517Google Scholar
  22. Terry RD, Wisniewski HM (1970) The ultrastructure of the neurofibrillary tangle and the senile plaque. In: Wolstenholme GEW, O'Connor M (eds) Alzheimer's disease and related conditions. Churchill, London, pp 145–180Google Scholar
  23. Torack RM (1978) The pathological physiology of dementia. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. Wisniewski HM, Terry RD (1973) Reexamination of the pathogenesis of the senile plaque. In: Zimmerman HM (ed) Progress in neuropathology, vol II. Grune and Stratton, New York, pp 1–26Google Scholar
  25. Wigboldus JM (1959) Over de aard en genese van de plaques seniles. Thesis. Dijkstra's Drukkerij N.V., GroningenGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • P. Eikelenboom
    • 1
  • F. C. Stam
    • 1
  1. 1.Patnologisch InstituutVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations